Joint User Grouping and Resource Allocation for Multi-Beam Satellite System with Non-Orthogonal Multiple Access

Author(s):  
Yonghong Xia ◽  
Deyi Peng ◽  
Yun Li ◽  
Yongju Xian ◽  
Bensi Zhang
Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 613
Author(s):  
Haodong Li ◽  
Fang Fang ◽  
Zhiguo Ding

Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) are regarded as promising technologies to improve the computation capability and offloading efficiency of mobile devices in the sixth-generation (6G) mobile system. This paper mainly focused on the hybrid NOMA-MEC system, where multiple users were first grouped into pairs, and users in each pair offloaded their tasks simultaneously by NOMA, then a dedicated time duration was scheduled to the more delay-tolerant user for uploading the remaining data by orthogonal multiple access (OMA). For the conventional NOMA uplink transmission, successive interference cancellation (SIC) was applied to decode the superposed signals successively according to the channel state information (CSI) or the quality of service (QoS) requirement. In this work, we integrated the hybrid SIC scheme, which dynamically adapts the SIC decoding order among all NOMA groups. To solve the user grouping problem, a deep reinforcement learning (DRL)-based algorithm was proposed to obtain a close-to-optimal user grouping policy. Moreover, we optimally minimized the offloading energy consumption by obtaining the closed-form solution to the resource allocation problem. Simulation results showed that the proposed algorithm converged fast, and the NOMA-MEC scheme outperformed the existing orthogonal multiple access (OMA) scheme.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1399 ◽  
Author(s):  
Omar A. Saraereh ◽  
Amer Alsaraira ◽  
Imran Khan ◽  
Peerapong Uthansakul

Non-orthogonal multiple access (NOMA) has become the key technology in the future 5G wireless networks. It can achieve multi-user multiplexing in the transmit power domain by allocating different power, which can effectively improve the system capacity and spectral efficiency. Aiming at the problem of high computational complexity and improving system capacity in non-orthogonal multiple access (NOMA) based on orthogonal frequency division multiple access (OFDMA) for 5G wireless cellular networks, this paper proposes an improved low complexity radio resource allocation algorithm for user grouping and power allocation optimization. The optimization model is established with the goal of maximizing system capacity. Through the step-by-step optimization idea, the complex non-convex optimization problem is decomposed into two sub-problems to be solved separately. Firstly, all users are grouped based on the greedy method, and then the power allocation is performed on the sub-carriers of the fixed group. Simulation results show that the proposed algorithm has better system capacity than the existing state-of-the-art algorithms and reduced complexity performance.


2021 ◽  
Vol 8 (3) ◽  
pp. 679-689
Author(s):  
Zhixin Liu ◽  
Changjian Liang ◽  
Yazhou Yuan ◽  
Kit Yan Chan ◽  
Xinping Guan

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Qi Zhai ◽  
Miodrag Bolic ◽  
Yong Li ◽  
Wei Cheng ◽  
Chenxi Liu

2019 ◽  
Vol 139 ◽  
pp. 78-90 ◽  
Author(s):  
Rukhsana Ruby ◽  
Shuxin Zhong ◽  
Derrick Wing Kwan Ng ◽  
Kaishun Wu ◽  
Victor C.M. Leung

Sign in / Sign up

Export Citation Format

Share Document