scholarly journals DRL-Assisted Resource Allocation for NOMA-MEC Offloading with Hybrid SIC

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 613
Author(s):  
Haodong Li ◽  
Fang Fang ◽  
Zhiguo Ding

Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) are regarded as promising technologies to improve the computation capability and offloading efficiency of mobile devices in the sixth-generation (6G) mobile system. This paper mainly focused on the hybrid NOMA-MEC system, where multiple users were first grouped into pairs, and users in each pair offloaded their tasks simultaneously by NOMA, then a dedicated time duration was scheduled to the more delay-tolerant user for uploading the remaining data by orthogonal multiple access (OMA). For the conventional NOMA uplink transmission, successive interference cancellation (SIC) was applied to decode the superposed signals successively according to the channel state information (CSI) or the quality of service (QoS) requirement. In this work, we integrated the hybrid SIC scheme, which dynamically adapts the SIC decoding order among all NOMA groups. To solve the user grouping problem, a deep reinforcement learning (DRL)-based algorithm was proposed to obtain a close-to-optimal user grouping policy. Moreover, we optimally minimized the offloading energy consumption by obtaining the closed-form solution to the resource allocation problem. Simulation results showed that the proposed algorithm converged fast, and the NOMA-MEC scheme outperformed the existing orthogonal multiple access (OMA) scheme.

2021 ◽  
Author(s):  
Navideh Ghafouri Jeshvaghani ◽  
Naser Movahhedinia ◽  
Mohammad Reza Khayyambashi

Abstract Non-orthogonal multiple access (NOMA) is one of the promising radio access techniques for resource allocation improvement in the 5th generation of cellular networks. Compared to orthogonal multiple access techniques (OMA), NOMA offers extra benefits, including greater spectrum efficiency which is provided through multiplexing users in the transmission power domain while using the same spectrum resources non-orthogonally. Even though NOMA uses Successive Interference Cancellation (SIC) to repeal the interference among users, user grouping has shown to have a substantial impact on its performance. This prformance improvement can appear in different parameters such as system capacity, rate, or the power consumption. In this paper, we propose a novel user grouping scheme for sum-rate maximization which increases the sum-rate up to 25 percent in comparison with two authenticated recent works. In addition to being matrix-based and having a polynomial time complexity, the proposed method is also able to cope with users experiencing different channel gains and powers in different sub-bands.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Antoine Abboud ◽  
Sayed A. Nassar

This paper proposes a novel strain hardening model for investigating gasket creep relaxation under compressive step-loading at room temperature. A closed form solution is developed for predicting the steady-state gasket pressure. Step-loading of the gasket may be directly achieved and controlled, or indirectly estimated through the bolt tightening and retightening torque. The effect of gasket material, time duration at each stress level, as well as the geometric parameters of the gasket are investigated. An experimental procedure and test setup are used to validate the proposed gasket model.


Author(s):  
Antoine Abboud ◽  
Sayed A. Nassar

This paper proposes a novel strain hardening model for investigating gasket creep relaxation under compressive step-loading at room temperature. A closed form solution is developed for predicting the steady-state gasket pressure. Step-loading of the gasket may be directly achieved and controlled, or indirectly estimated through the bolt tightening and re-tightening torque. The effect of gasket material, time duration at each stress level, as well as the geometric parameters of the gasket is investigated. An experimental procedure and test set-up are used to validate the proposed gasket model.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6024
Author(s):  
Chunling Peng ◽  
Guozhong Wang ◽  
Fangwei Li ◽  
Huaping Liu

This paper considers simultaneous wireless information and power transfer (SWIPT) in a decode-and-forward two-way relay (DF-TWR) network, where a power splitting protocol is employed at the relay for energy harvesting. The goal is to jointly optimize power allocation (PA) at the source nodes, power splitting (PS) at the relay node, and time allocation (TA) of each duration to minimize the system outage probability. In particular, we propose a static joint resource allocation (JRA) scheme and a dynamic JRA scheme with statistical channel properties and instantaneous channel characteristics, respectively. With the derived closed-form expression of the outage probability, a successive alternating optimization algorithm is proposed to tackle the static JRA problem. For the dynamic JRA scheme, a suboptimal closed-form solution is derived based on a multistep optimization and relaxation method. We present a comprehensive set of simulation results to evaluate the proposed schemes and compare their performances with those of existing resource allocation schemes.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1399 ◽  
Author(s):  
Omar A. Saraereh ◽  
Amer Alsaraira ◽  
Imran Khan ◽  
Peerapong Uthansakul

Non-orthogonal multiple access (NOMA) has become the key technology in the future 5G wireless networks. It can achieve multi-user multiplexing in the transmit power domain by allocating different power, which can effectively improve the system capacity and spectral efficiency. Aiming at the problem of high computational complexity and improving system capacity in non-orthogonal multiple access (NOMA) based on orthogonal frequency division multiple access (OFDMA) for 5G wireless cellular networks, this paper proposes an improved low complexity radio resource allocation algorithm for user grouping and power allocation optimization. The optimization model is established with the goal of maximizing system capacity. Through the step-by-step optimization idea, the complex non-convex optimization problem is decomposed into two sub-problems to be solved separately. Firstly, all users are grouped based on the greedy method, and then the power allocation is performed on the sub-carriers of the fixed group. Simulation results show that the proposed algorithm has better system capacity than the existing state-of-the-art algorithms and reduced complexity performance.


2015 ◽  
Vol 743 ◽  
pp. 792-795
Author(s):  
Z.H. Xu ◽  
J.Y. Li ◽  
J. Wang

In this paper, we consider the problem of local power constrained coherent distributed detection over fading multi-access channel (MAC). The deflection coefficient maximization (DCM) is used to optimize the performance of fusion system under local power constraint of sensors. We use the statistical information of channel gain to obtain the deflection coefficient of the detection statistics at the fusion center. We derive the closed-form solution to the considered optimization problem. Monte-Carlo simulations are carried out to verify the performance of the proposed method. Simulation results show that the proposed method could significantly improve the detection performance of the fusion system under local power constraint and low signal-to-noise ratio (SNR).


Sign in / Sign up

Export Citation Format

Share Document