Time-critical MAC protocol based on IEEE 802.15.4 IR-UWB optimized for industrial wireless sensor networks

Author(s):  
Rafael Reinhold ◽  
Lisa Underberg ◽  
Ruediger Kays
2014 ◽  
Vol 573 ◽  
pp. 407-411
Author(s):  
Chelliah Pandeeswaran ◽  
Natrajan Papa ◽  
Sundar G. Jayesh

MAC protocol design in Wireless sensor networks becomes vibrant research field for the past several years. In this paper an EE-Hybrid MAC protocol (Energy efficient hybrid Medium Access Control) has been proposed, which is energy efficient and low latency MAC protocol, which uses interrupt method to assign priority for certain wireless sensor nodes assumed to be present in critical loops of industrial process control domain. EE-Hybrid MAC overcomes some of the limitations in the existing approaches. Industrial wireless sensor network require a suitable MAC protocol which offers energy efficiency and capable of handling emergency situations in industrial automation domain. Time critical and mission critical applications demands not only energy efficiency but strict timeliness and reliability. Harsh environmental condition and dynamic network topologies may cause industrial sensor to malfunction, so the developed protocol must adapt to changing topology and harsh environment. Most of the existing MAC protocols have number of limitations for industrial application domain In industrial automation scenario, certain sensor loops are found to be time critical, where data’s have to be transferred without any further delay. The proposed EE-Hybrid MAC protocol is simulated in NS2 environment, from the result it is observed that proposed protocol provides better performance compared to the conventional MAC protocols.


2013 ◽  
pp. 343-359 ◽  
Author(s):  
Ivanovitch Silva ◽  
Luiz Affonso Guedes ◽  
Paulo Portugal

The evolution of industrial networks can be summarized as a constant battle to define the universal technology that integrates field devices and applications. Since the Fieldbus wars in the 1980s, diverse wired solutions have been proposed. However, this scenario has been changing due to the introduction of industrial wireless sensor networks. In the last 10 years, the development of deterministic scheduling techniques, redundant routing algorithms, and energy saving issues has brought wireless sensor networks into the industrial domain. This new communication paradigm is governed by a de facto standard, the IEEE 802.15.4, and more recently also by the IEEE 802.15.5. However, there are signs of a new battle on the horizon with the new publicly available specifications of WirelessHART, ISA100.11a, and IEC 62601. In this chapter, to the authors analyze the advantages and drawbacks of these emerging technologies for industrial wireless sensor networks.


Author(s):  
Carlos Lino ◽  
Carlos Tavares Calafate ◽  
Pietro Manzoni ◽  
Juan-Carlos Cano ◽  
Arnoldo Díaz

The performance of wireless sensor networks (WSNs) at monitoring time-critical events is an important research topic, mainly due to the need to ensure that the actions to be taken upon these events are timely. To determine the effectiveness of the IEEE 802.15.4 standard at monitoring time-critical events in WSNs, we introduce a routing scheme based on drain announcements that seeks minimum routing overhead. We carried out a novel performance evaluation of the IEEE 802.15.4 technology under different conditions, to determine whether or not near-real-time event monitoring is feasible. By analyzing different simulation metrics such as packet loss rate, average end-to-end delay, and routing overhead, we determine the degree of effectiveness of the IEEE 802.15.4 standard at supporting time-critical tasks in multi-hop WSNs, evidencing its limitations upon the size and the amount of traffic flowing through the network.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2635 ◽  
Author(s):  
Sabitri Poudel ◽  
Sangman Moh

Unmanned aerial vehicle (UAV)-aided wireless sensor networks (UWSNs) can be effectively used for time-critical sensing applications. UAVs can be used to collect the sensed data from sensors and transfer them to a base station. The real-time transfer of data is highly desired in the time-critical applications. However, the medium access control (MAC) protocols designed for UWSNs so far are primarily focused on the efficient use of UAVs to collect data in the sensing areas. In this paper, we propose an energy-efficient and fast MAC (EF-MAC) protocol in UWSNs for time-critical sensing applications. EF-MAC adopts carrier sense multiple access (CSMA) for the registration of sensor nodes with a UAV and time division multiple access (TDMA) with variable slot time for the transmission of collected data. The UAV is equipped with two transceivers to minimize both energy consumption and delay in air-to-ground communication. The energy consumption and delay are formally analyzed and the performance of EF-MAC is evaluated via extensive simulation. The simulation results show that the proposed EF-MAC outperforms the conventional MAC protocols in terms of energy efficiency and communication delay.


Sign in / Sign up

Export Citation Format

Share Document