periodic traffic
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2020 ◽  
Vol 24 (7) ◽  
pp. 1510-1513 ◽  
Author(s):  
Nurzaman Ahmed ◽  
Md. Iftekhar Hussain

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3350
Author(s):  
Yipeng Wang ◽  
Wei Yang ◽  
Ruisong Han ◽  
Linsen Xu ◽  
Haojiang Zhao

As the reference communication standard of wireless sensor networks (WSNs), the IEEE 802.15.4 standard has been adopted in various WSN-based applications. In many of these applications, one of the most common traffic pattern types is a periodic traffic patterns, however, the majority of existing analytical models target either saturated or unsaturated network traffic patterns. Furthermore, few of them can be directly extended to the periodic traffic scenario, since periodic traffic brings unstable load status to sensor nodes. To better characterize the WSNs with periodic traffic, we propose an accurate and scalable analytical framework for the IEEE 802.15.4 MAC protocol. By formulating the relationship between clear channel assessment (CCA) and its successful probability from the perspective of channel state and node state, single node’s behavior and whole network’s performance under different network scales and traffic loads can be derived. Extensive simulations are conducted to validate the proposed framework in terms of both local statistics and overall statistics, and the results show that the model can represent the actual behavior and the real performance of both single node and whole network. Besides, as the simplified version of double CCAs mode (DS mode), single CCA mode (SS mode), is also analyzed with simple modifications on the proposed analytical framework. Combining the analytical framework with simulation results, the applicable network scenarios of two modes are also demonstrated respectively. Finally, an approximate distribution of one data packet’s backoff duration is proposed. With this approximate distribution, a conservative estimation of data packet’s average transmission latency in networks with given configurations can be easily carried out.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 668
Author(s):  
Jie Jian ◽  
Lide Wang ◽  
Huang Chen ◽  
Xiaobo Nie

The time-triggered communication paradigm is a cost-efficient way to meet the real-time requirements of cyber-physical systems. It is a non-deterministic polynomial NP-complete problem for multi-hop networks and non-strictly periodic traffic. A two-level scheduling approach is proposed to simplify the complexity during optimization. In the first level, a fuzzy-controlled quantum-behaved particle swarm optimization (FQPSO) algorithm is proposed to optimize the scheduling performance by assigning time-triggered frame instances to the basic periods of each link. In order to prevent population from high aggregation, a random mutation mechanism is used to disturb particles at the aggregation point and enhance the diversity at later stages. Fuzzy logic is introduced and well designed to realize a dynamic adaptive adjustment of the contraction–expansion coefficient and mutation rate in FQPSO. In the second level, we use an improved Satisfiability Modulo Theories (SMT) scheduling algorithm to solve the collision-free and temporal constraints. A schedulability ranking method is proposed to accelerate the computation of the SMT-based incremental scheduler. Our approach can co-optimize the jitter and load balance of communication for an off-line schedule. The experiments show that the proposed approach can improve the performance of the scheduling table, reduce the optimization time, and reserve space for incremental messages.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 207076-207088
Author(s):  
Luca Lusvarghi ◽  
Maria Luisa Merani
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2337 ◽  
Author(s):  
Matevž Pustišek ◽  
Dejan Dolenc ◽  
Andrej Kos

In this paper, we present Low-Bandwidth Distributed Applications Framework (LDAF)—an application-aware gateway for communication-constrained Internet of things (IoT) devices. A modular approach facilitates connecting to existing cloud backend servers and managing message formats and APIs’ native application logic to meet the communication constraints of resource-limited end devices. We investigated options for positioning the LDAF server in fog computing architectures. We demonstrated the approach in three use cases: (i) a simple domain name system (DNS) query from the device to a DNS server, (ii) a complex interaction of a blockchain—based IoT device with a blockchain network, and (iii) difference based patching of binary (system) files at the IoT end devices. In a blockchain smart meter use case we effectively enabled decentralized applications (DApp) for devices that without our solution could not participate in a blockchain network. Employing the more efficient binary content encoding, we reduced the periodic traffic from 16 kB/s to ~1.1 kB/s, i.e., 7% of the initial traffic. With additional optimization of the application protocol in the gateway and message filtering, the periodic traffic was reduced to ~1% of the initial traffic, without any tradeoffs in the application’s functionality or security. Using a function of binary difference we managed to reduce the size of the communication traffic to the end device, at least when the binary patch was smaller than the patching file.


Sign in / Sign up

Export Citation Format

Share Document