Integrating visual and haptic shape information to form a multimodal perceptual space

Author(s):  
N. Gaissert ◽  
C. Wallraven
2007 ◽  
Author(s):  
Berenice Valdes-Conroy ◽  
Kenny Coventry ◽  
Pedro Guijarro-Fuentes ◽  
Alejandro Castillo
Keyword(s):  

2010 ◽  
Vol 130 (5) ◽  
pp. 873-881 ◽  
Author(s):  
Yoshiyuki Sato ◽  
Junichi Narita ◽  
Yoichi Kageyama ◽  
Makoto Nishida

2021 ◽  
Vol 13 (14) ◽  
pp. 2656
Author(s):  
Furong Shi ◽  
Tong Zhang

Deep-learning technologies, especially convolutional neural networks (CNNs), have achieved great success in building extraction from areal images. However, shape details are often lost during the down-sampling process, which results in discontinuous segmentation or inaccurate segmentation boundary. In order to compensate for the loss of shape information, two shape-related auxiliary tasks (i.e., boundary prediction and distance estimation) were jointly learned with building segmentation task in our proposed network. Meanwhile, two consistency constraint losses were designed based on the multi-task network to exploit the duality between the mask prediction and two shape-related information predictions. Specifically, an atrous spatial pyramid pooling (ASPP) module was appended to the top of the encoder of a U-shaped network to obtain multi-scale features. Based on the multi-scale features, one regression loss and two classification losses were used for predicting the distance-transform map, segmentation, and boundary. Two inter-task consistency-loss functions were constructed to ensure the consistency between distance maps and masks, and the consistency between masks and boundary maps. Experimental results on three public aerial image data sets showed that our method achieved superior performance over the recent state-of-the-art models.


2021 ◽  
pp. 026461962110031
Author(s):  
Torø Graven ◽  
Clea Desebrock

This study investigated whether adding auditory angular and curved sounds to tactile angle and curve shapes – one unspecified sound to one unspecified shape – positively influences the accuracy and exploration time in recognising tactile angles and curves when experienced and inexperienced in using haptic touch. A within-participant experiment was conducted, with two groups of participants: experienced and inexperienced in using haptic touch, and with two conditions: congruous (e.g., angle shape and angular sound) and incongruous (e.g., angle shape and curved sound) tactile and auditory shape information. Adding congruous auditory angular and curved sounds to tactile angle and curve shapes positively influences the accuracy in recognising tactile angles and curves both when experienced and inexperienced in using haptic touch, and the exploration time on correct recognitions when experienced. People integrate tactile and auditory (angle; curve) shape information and this improves their proficiency in recognising tactile angles and curves.


2021 ◽  
Author(s):  
Manon C. Wigbers ◽  
Tzer Han Tan ◽  
Fridtjof Brauns ◽  
Jinghui Liu ◽  
S. Zachary Swartz ◽  
...  

2019 ◽  
Vol 31 (6) ◽  
pp. 821-836 ◽  
Author(s):  
Elliot Collins ◽  
Erez Freud ◽  
Jana M. Kainerstorfer ◽  
Jiaming Cao ◽  
Marlene Behrmann

Although shape perception is primarily considered a function of the ventral visual pathway, previous research has shown that both dorsal and ventral pathways represent shape information. Here, we examine whether the shape-selective electrophysiological signals observed in dorsal cortex are a product of the connectivity to ventral cortex or are independently computed. We conducted multiple EEG studies in which we manipulated the input parameters of the stimuli so as to bias processing to either the dorsal or ventral visual pathway. Participants viewed displays of common objects with shape information parametrically degraded across five levels. We measured shape sensitivity by regressing the amplitude of the evoked signal against the degree of stimulus scrambling. Experiment 1, which included grayscale versions of the stimuli, served as a benchmark establishing the temporal pattern of shape processing during typical object perception. These stimuli evoked broad and sustained patterns of shape sensitivity beginning as early as 50 msec after stimulus onset. In Experiments 2 and 3, we calibrated the stimuli such that visual information was delivered primarily through parvocellular inputs, which mainly project to the ventral pathway, or through koniocellular inputs, which mainly project to the dorsal pathway. In the second and third experiments, shape sensitivity was observed, but in distinct spatio-temporal configurations from each other and from that elicited by grayscale inputs. Of particular interest, in the koniocellular condition, shape selectivity emerged earlier than in the parvocellular condition. These findings support the conclusion of distinct dorsal pathway computations of object shape, independent from the ventral pathway.


2015 ◽  
Vol 752-753 ◽  
pp. 1406-1412
Author(s):  
Lei Zeng ◽  
Jian Chen ◽  
Han Ning Li ◽  
Bin Yan ◽  
Yi Fu Xu ◽  
...  

In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. As a vital part of the PCB, the via connects the devices, the components and the wires and plays a very important role for the connection of the circuits. With the development of testing technology, the nondestructive testing of the via extends from two dimension to three dimension in recent years. This paper proposes a three dimensional detection algorithm using morphology method to test the via. The proposed algorithm takes full advantage of the three dimensional structure and shape information of the via. We have used the proposed method to detect via from PCB images with different size and quality, and found the detection performances to be very encouraging.


Sign in / Sign up

Export Citation Format

Share Document