A supervised density-peaks-based classification approach for hyperspectral images

Author(s):  
Tong Li ◽  
Junping Zhang ◽  
Ye Zhang
2020 ◽  
Vol 12 (22) ◽  
pp. 3745
Author(s):  
Claude Cariou ◽  
Steven Le Moan ◽  
Kacem Chehdi

We investigated nearest-neighbor density-based clustering for hyperspectral image analysis. Four existing techniques were considered that rely on a K-nearest neighbor (KNN) graph to estimate local density and to propagate labels through algorithm-specific labeling decisions. We first improved two of these techniques, a KNN variant of the density peaks clustering method dpc, and a weighted-mode variant of knnclust, so the four methods use the same input KNN graph and only differ by their labeling rules. We propose two regularization schemes for hyperspectral image analysis: (i) a graph regularization based on mutual nearest neighbors (MNN) prior to clustering to improve cluster discovery in high dimensions; (ii) a spatial regularization to account for correlation between neighboring pixels. We demonstrate the relevance of the proposed methods on synthetic data and hyperspectral images, and show they achieve superior overall performances in most cases, outperforming the state-of-the-art methods by up to 20% in kappa index on real hyperspectral images.


Author(s):  
Raquel Lazcano López ◽  
Daniel Madroñal Quintín ◽  
Samuel Ortega ◽  
Himar Fabelo Gómez ◽  
Ruben Salvador ◽  
...  

2013 ◽  
Vol 11 (1) ◽  
pp. 8-13
Author(s):  
V. Behar ◽  
V. Bogdanova

Abstract In this paper the use of a set of nonlinear edge-preserving filters is proposed as a pre-processing stage with the purpose to improve the quality of hyperspectral images before object detection. The capability of each nonlinear filter to improve images, corrupted by spatially and spectrally correlated Gaussian noise, is evaluated in terms of the average Improvement factor in the Peak Signal to Noise Ratio (IPSNR), estimated at the filter output. The simulation results demonstrate that this pre-processing procedure is efficient only in case the spatial and spectral correlation coefficients of noise do not exceed the value of 0.6


PIERS Online ◽  
2010 ◽  
Vol 6 (5) ◽  
pp. 480-484 ◽  
Author(s):  
Imed Riadh Farah ◽  
Selim Hemissi ◽  
Karim Saheb Ettabaa ◽  
Bassel Souleiman

Sign in / Sign up

Export Citation Format

Share Document