Second Order Polynomial Class of Nyquist Windows for Reduction of ICI in OFDM Systems

Author(s):  
Kang Dai ◽  
Rongfang Song
2011 ◽  
Vol 65 (2) ◽  
pp. 455-467 ◽  
Author(s):  
Rongfang Song ◽  
Xianhong Guo ◽  
S. H. Leung

Author(s):  
S. Kala ◽  
A. Kumar ◽  
A. K. Joshi ◽  
V. M. Bothale ◽  
B. G. Krishna

<p><strong>Abstract.</strong> Satellite imageries in True color composite or Natural Color composite (NCC) serves the best combination for visual interpretation. Red, Green and Infrared channels form false color composite which might not be as useful as NCC to a non-remote sensing professional. As blue band is affected by large atmospheric scattering, satellites like IRS-LISS IV, SPOT do not have blue band. To generate NCC from such satellite data blue band must be simulated. Existing algorithms of spectral transformation do not provide robust coefficients leading to wrong NCC colors especially in water bodies. To achieve more robust coefficients, we have proposed new algorithm to generate NCC for IRS-LISS IV data using second order polynomial regression technique. Second order polynomial transformation functions consider even minor variability present in the image as compared to 1st order so that the derived coefficients are adjustable to accommodate spatial and temporal variability while generating NCC. In this study, Sentinel-2 image was used for deriving coefficients with blue band as dependent and green, red and infrared as independent variables. Simulated Sentinel band showed high accuracy with correlation of 0.93 and 0.97 for two test sites. Using the same coefficients, blue band was simulated for LISS-IV which also showed good correlation of 0.90 with sentinel original blue band. On comparing LISS-IV simulated NCC with simulated NCC from other algorithms, it was observed that higher order polynomial transformation was able to achieve higher accuracy especially for water bodies where expected color is green. Thus, proposed algorithms can be used for transforming false color image to natural color images.</p>


Author(s):  
Winda Kusuma Dewi ◽  
Choirul Anam ◽  
Eko Hidayanto ◽  
Annisa Lidia Wati ◽  
Geoff Dougherty

Abstract The study aims to correlate the effective diameter (Deff) and water-equivalent diameter (Dw) parameters with anterior–posterior (AP), lateral (LAT) and AP + LAT dimensions in order to estimate the patient dose in head CT examinations. Seventy-four patient datasets from head CT examinations were retrospectively collected. The patient’s sizes were calculated from the middle slice using a software of IndoseCT. Dw and Deff were plotted as functions of AP, LAT and AP + LAT dimensions. The best trendline fit for LAT and AP functions was a second order polynomial, which resulted in R2 of 0.89 for Deff vs LAT, 0.88 for Dw vs LAT, 0.92 for Deff vs AP and 0.91 for Dw vs AP. A linear correlation was found for Deff vs AP + LAT, Dw vs AP + LAT and Dw vs Deff with R2 of 0.97, 0.96 and 0.98, respectively.


Author(s):  
Jianbo Zhou ◽  
Gregory T. Smedley

An ocular outflow model is proposed to theorize the effect of Schlemm’s canal (SC) and/or collector channel (CC) dilation combined with a trabecular bypass on elevated intraocular pressure (IOP) in glaucomatous eyes. The dilated height of the elliptic SC is largest at the bypass and linearly deceases to the non-dilated height over the dilated circumferential length. The CC dilation is modeled with a reduced outflow resistance of second order polynomial. Equations governing the pressure and flow in SC are solved numerically. The model predicts that the IOP is reduced substantially with moderate dilation from the normal 20 μm to 40 μm at the bypass. SC dilation is more effective for eyes with smaller SC. The dilation of CC can also significantly lower the IOP. With the trabecular bypass alone, the elevated IOP is expected to drop to the mid-to-high teens. The IOP can be further reduced by another 3 to 6 mmHg with moderate SC and CC dilation.


Sign in / Sign up

Export Citation Format

Share Document