Climate Based Factor Analysis and Epidemiology Prediction for Potato Late Blight Using Machine Learning Approaches

Author(s):  
B. K. Singh ◽  
R. P. Singh ◽  
Pratima Tiwari ◽  
Nikhilesh Kumar
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Meisam Ghasedi ◽  
Maryam Sarfjoo ◽  
Iraj Bargegol

AbstractThe purpose of this study is to investigate and determine the factors affecting vehicle and pedestrian accidents taking place in the busiest suburban highway of Guilan Province located in the north of Iran and provide the most accurate prediction model. Therefore, the effective principal variables and the probability of occurrence of each category of crashes are analyzed and computed utilizing the factor analysis, logit, and Machine Learning approaches simultaneously. This method not only could contribute to achieving the most comprehensive and efficient model to specify the major contributing factor, but also it can provide officials with suggestions to take effective measures with higher precision to lessen accident impacts and improve road safety. Both the factor analysis and logit model show the significant roles of exceeding lawful speed, rainy weather and driver age (30–50) variables in the severity of vehicle accidents. On the other hand, the rainy weather and lighting condition variables as the most contributing factors in pedestrian accidents severity, underline the dominant role of environmental factors in the severity of all vehicle-pedestrian accidents. Moreover, considering both utilized methods, the machine-learning model has higher predictive power in all cases, especially in pedestrian accidents, with 41.6% increase in the predictive power of fatal accidents and 12.4% in whole accidents. Thus, the Artificial Neural Network model is chosen as the superior approach in predicting the number and severity of crashes. Besides, the good performance and validation of the machine learning is proved through performance and sensitivity analysis.


Plant Science ◽  
2020 ◽  
Vol 295 ◽  
pp. 110316 ◽  
Author(s):  
Kaitlin M. Gold ◽  
Philip A. Townsend ◽  
Ittai Herrmann ◽  
Amanda J. Gevens

2019 ◽  
Vol 70 (3) ◽  
pp. 214-224
Author(s):  
Bui Ngoc Dung ◽  
Manh Dzung Lai ◽  
Tran Vu Hieu ◽  
Nguyen Binh T. H.

Video surveillance is emerging research field of intelligent transport systems. This paper presents some techniques which use machine learning and computer vision in vehicles detection and tracking. Firstly the machine learning approaches using Haar-like features and Ada-Boost algorithm for vehicle detection are presented. Secondly approaches to detect vehicles using the background subtraction method based on Gaussian Mixture Model and to track vehicles using optical flow and multiple Kalman filters were given. The method takes advantages of distinguish and tracking multiple vehicles individually. The experimental results demonstrate high accurately of the method.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document