QoE Assessment of Weight Perception in Remote Robot System with Force Feedback

Author(s):  
Limin Wen ◽  
Yutaka Ishibashi ◽  
Pingguo Huang ◽  
Yuichiro Tateiwa ◽  
Hitoshi Ohnishi
Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5157
Author(s):  
Hiroki Yokota ◽  
Takeshi Yoneyama ◽  
Tetsuyou Watanabe ◽  
Yasuo Sasagawa ◽  
Mitsutoshi Nakada

Avoiding unnecessary bleeding during neuroendoscopic surgeries is crucial because achieving hemostasis in a narrow operating space is challenging. However, when the location of a blood vessel in a tumor cannot be visually confirmed, unintentional damage to the vessel and subsequent bleeding may occur. This study proposes a method for tumor blood vessel detection using a master–slave surgical robot system equipped with a force sensor in the slave gripper. Using this method, blood pulsation inside a tumor was detected, displayed as a gripping force wave, via the slave force sensor. The characteristics of gripping force due to blood pulsation were extracted by measuring the fluctuation of the force in real time. The presence or absence of blood vessels was determined on the basis of cross-correlation coefficients between the gripping force fluctuation waveform due to blood pulsation and model fluctuation waveform. Experimental validation using two types of simulated tumors (soft: E = 6 kPa; hard: E = 38 kPa) and a simulated blood vessel (E = 1.9 MPa, radius = 0.5 mm, thickness = 0.1 mm) revealed that the presence of blood vessels could be detected while gripping at a constant angle and during transient gripping.


2010 ◽  
Vol 2010 (0) ◽  
pp. _2A1-C08_1-_2A1-C08_3
Author(s):  
Mizuki KOMIYA ◽  
Kotaro TADANO ◽  
Kenji KAWASHIMA ◽  
Kazuyuki Kojima ◽  
Naofumi Tanaka

2003 ◽  
Vol 2003.38 (0) ◽  
pp. 148-149
Author(s):  
Takeshi Tada ◽  
Shigeyuki Shimachi ◽  
Akira Hashimoto ◽  
Masamichi Sakaguchi
Keyword(s):  

Author(s):  
E. H. K. Fung ◽  
C. W. M. Yuen ◽  
L. C. Hau ◽  
W. K. Wong ◽  
L. K. Chan

This paper describes the performance of a stepper-motor-based robot system that exerts a prescribe tension on fabrics to facilitate inspection process. In fact, inspection is an important part of quality control in the textile and clothing industry. It is a useful tool to safeguard the quality and ensure that the product can meet the customer expectation and the relevant stipulated standard. Obviously, before the automated inspection process, it is necessary to expand the fabrics being tested to have certain tension. Due to the nonlinear nature of fabric stiffness, it is essential that an adaptive force feedback control be employed to regulate the applied tension. A pair of symmetrical two-link mechanisms with a revolute joint, driven by a stepper motor, in conjunction with an adaptive controller, constitutes the robot system proposed in the present work. The two mechanisms are responsible for stretching the fabrics to be inspected, while the controller regulates the stretching force to the desired value by sensing the reaction force exerted on the links by the fabrics. In order to update the controller parameters so as to account for the nonlinear change of the fabric stiffness, a Model-Reference Adaptive System (MRAS) based on the augmented error is designed. The performance of MRAS is compared with a Proportional-plus-Integral (PI) control. A short-sleeved T-shirt made of knitted fabric is considered for the demonstration of the system. Besides, a prescribed value of tension is set to the system. Numerical simulations are conducted to illustrate the feasibility and performance of the proposed system. Successful outcomes of the present work establish a foundation for the real implementation of the hanger.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Yuhua Jiang ◽  
Keyun Liu ◽  
Youxiang Li

To evaluate the feasibility and safety of the robot of endovascular treatment (RobEnt) in clinical practice, we carried out a cerebral angiography using this robot system. We evaluated the performance of application of the robot system to clinical practice through using this robotic system to perform the digital subtraction angiography for a patient who was suspected of suffering intracranial aneurysm. At the same time, through comparing the postoperative head nuclear magnetic and blood routine with the preoperative examination, we evaluated the safety of application of the robot system to clinical practice. We performed the robot system to complete the bilateral carotid artery and bilateral vertebral arteriography. The results indicate that there was no obvious abnormality in the patient’s cerebral artery. No obvious abnormality was observed in the examination of patients’ check-up, head nuclear magnetism, and blood routine after the digital subtraction angiography. From this clinical trial, it can be observed that the robot system can perform the operation of cerebral angiography. The robot system can basically complete the related observation indexes, and its accuracy, effectiveness, stability, and safety basically meet the requirements of clinical application in neurointerventional surgery.


Author(s):  
Cheng Xu ◽  
Yang Wang ◽  
Chaozheng Zhou ◽  
Zhenfeng Zhang ◽  
Le Xie ◽  
...  

Background: The complex anatomical structure, limited field of vision, and easily damaged nerves, blood vessels, and other anatomical structures are the main challenges of a cranio-maxillofacial (CMF) plastic surgical robot. Bearing these characteristics and challenges in mind, this paper presents the design of a master-slave surgical robot system with a force feedback function to improve the accuracy and safety of CMF surgery. Methods: A master-slave CMF surgical robot system based on force feedback is built with the master tactile robot and compact slave robot developed in the laboratory. Model-based master robot gravity compensation and force feedback mechanism is used for the surgical robot. Control strategies based on position increment control and ratio control are adopted. Aiming at the typical mandibular osteotomy in CMF surgery, a scheme suitable for robot-assisted mandibular osteotomy is proposed. The accuracy and force feedback function of the robot system under direct control and master-slave motion modes are verified by experiments. Results: The drilling experiment of the mandible model in direct control mode shows that the average entrance point error is 1.37 ± 0.30 mm, the average exit point error is 1.30 ± 0.25 mm, and the average posture error is 2.27° ± 0.69°. The trajectory tracking and in vitro experiment in the master-slave motion mode show that the average position following error is 0.68 mm, and the maximum force following error is 0.586 N, achieving a good tracking and force feedback function. Conclusion: The experimental results show that the designed master-slave CMF robot can assist the surgeon in completing accurate mandibular osteotomy surgery. Through force feedback mechanism, it can improve the interaction between the surgeon and the robot, and complete tactile trajectory movements.


Sign in / Sign up

Export Citation Format

Share Document