2A1-C08 Study on Operatability of Surgical Robot System with Force Feedback

2010 ◽  
Vol 2010 (0) ◽  
pp. _2A1-C08_1-_2A1-C08_3
Author(s):  
Mizuki KOMIYA ◽  
Kotaro TADANO ◽  
Kenji KAWASHIMA ◽  
Kazuyuki Kojima ◽  
Naofumi Tanaka
Author(s):  
Cheng Xu ◽  
Yang Wang ◽  
Chaozheng Zhou ◽  
Zhenfeng Zhang ◽  
Le Xie ◽  
...  

Background: The complex anatomical structure, limited field of vision, and easily damaged nerves, blood vessels, and other anatomical structures are the main challenges of a cranio-maxillofacial (CMF) plastic surgical robot. Bearing these characteristics and challenges in mind, this paper presents the design of a master-slave surgical robot system with a force feedback function to improve the accuracy and safety of CMF surgery. Methods: A master-slave CMF surgical robot system based on force feedback is built with the master tactile robot and compact slave robot developed in the laboratory. Model-based master robot gravity compensation and force feedback mechanism is used for the surgical robot. Control strategies based on position increment control and ratio control are adopted. Aiming at the typical mandibular osteotomy in CMF surgery, a scheme suitable for robot-assisted mandibular osteotomy is proposed. The accuracy and force feedback function of the robot system under direct control and master-slave motion modes are verified by experiments. Results: The drilling experiment of the mandible model in direct control mode shows that the average entrance point error is 1.37 ± 0.30 mm, the average exit point error is 1.30 ± 0.25 mm, and the average posture error is 2.27° ± 0.69°. The trajectory tracking and in vitro experiment in the master-slave motion mode show that the average position following error is 0.68 mm, and the maximum force following error is 0.586 N, achieving a good tracking and force feedback function. Conclusion: The experimental results show that the designed master-slave CMF robot can assist the surgeon in completing accurate mandibular osteotomy surgery. Through force feedback mechanism, it can improve the interaction between the surgeon and the robot, and complete tactile trajectory movements.


Author(s):  
Haibo Feng ◽  
Yanwu Zhai ◽  
Yili Fu

Purpose Surgical robot systems have been used in single-port laparoscopy (SPL) surgery to improve patient outcomes. This study aims to develop a vision robot system for SPL surgery to effectively improve the visualization of surgical robot systems for relatively complex surgical procedures. Design/methodology/approach In this paper, a new master-slave magnetic anchoring vision robotic system for SPL surgery was proposed. A lighting distribution analysis for the imaging unit of the vision robot was carried out to guarantee illumination uniformity in the workspace during SPL surgery. Moreover, cleaning force for the lens of the camera was measured to assess safety for an abdominal wall, and performance assessment of the system was performed. Findings Extensive experimental results for illumination, control, cleaning force and functionality test have indicated that the proposed system has an excellent performance in providing the visual feedback. Originality/value The main contribution of this paper lies in the development of a magnetic anchoring vision robot system that successfully improves the ability of cleaning the lens and avoiding the blind area in a field of view.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5157
Author(s):  
Hiroki Yokota ◽  
Takeshi Yoneyama ◽  
Tetsuyou Watanabe ◽  
Yasuo Sasagawa ◽  
Mitsutoshi Nakada

Avoiding unnecessary bleeding during neuroendoscopic surgeries is crucial because achieving hemostasis in a narrow operating space is challenging. However, when the location of a blood vessel in a tumor cannot be visually confirmed, unintentional damage to the vessel and subsequent bleeding may occur. This study proposes a method for tumor blood vessel detection using a master–slave surgical robot system equipped with a force sensor in the slave gripper. Using this method, blood pulsation inside a tumor was detected, displayed as a gripping force wave, via the slave force sensor. The characteristics of gripping force due to blood pulsation were extracted by measuring the fluctuation of the force in real time. The presence or absence of blood vessels was determined on the basis of cross-correlation coefficients between the gripping force fluctuation waveform due to blood pulsation and model fluctuation waveform. Experimental validation using two types of simulated tumors (soft: E = 6 kPa; hard: E = 38 kPa) and a simulated blood vessel (E = 1.9 MPa, radius = 0.5 mm, thickness = 0.1 mm) revealed that the presence of blood vessels could be detected while gripping at a constant angle and during transient gripping.


Sign in / Sign up

Export Citation Format

Share Document