Spatial, genetic and biotic factors shape within‐crown leaf trait variation and herbivore performance in a foundation tree species

2020 ◽  
Author(s):  
Michael Eisenring ◽  
Sybille B. Unsicker ◽  
Richard L. Lindroth
Oikos ◽  
2020 ◽  
Vol 129 (10) ◽  
pp. 1521-1530 ◽  
Author(s):  
Sylvain Schmitt ◽  
Bruno Hérault ◽  
Émilie Ducouret ◽  
Anne Baranger ◽  
Niklas Tysklind ◽  
...  

2012 ◽  
Vol 28 (5) ◽  
pp. 527-530 ◽  
Author(s):  
Carl F. Salk

Plants have an inherent flexibility to respond to different environmental conditions. One axis of plant ecophysiological strategy is seen in the spectrum of leaf functional traits. Flexibility in these traits would be suggestive of plants’ phenotypic plasticity in response to environmental changes. This research seeks to identify differences between leaves of sprout and non-sprout shoots of a broad ecological range of neotropical tree species. Using a functional-trait approach, this study assesses a large pool of species for within-species physiological flexibility. Leaf mass per area (LMA) and leaf area were measured for plants of sprout and non-sprout origin for 26 tree species grown in a reforestation plantation in Panama. Sprouts had a consistently lower LMA than non-sprouts, but there was no consistent pattern for leaf area. These trends show that sprouts are more like pioneer species than conspecific saplings, a finding in general agreement with fast sprout growth seen in previous studies. Further, later-successional (high LMA) species showed a greater reduction of LMA in sprouts. These results show that tropical tree species adjust physiologically to changing ecological roles and suggest that certain species may be more resilient than realized to changing climate and disturbance patterns.


Author(s):  
Tobias Proß ◽  
Helge Bruelheide ◽  
Catherine Potvin ◽  
Maria Sporbert ◽  
Stefan Trogisch ◽  
...  

Author(s):  
Tobias Proß ◽  
Helge Bruelheide ◽  
Catherine Potvin ◽  
Maria Sporbert ◽  
Stefan Trogisch ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1145 ◽  
Author(s):  
Yun Deng ◽  
Xiaobao Deng ◽  
Jinlong Dong ◽  
Wenfu Zhang ◽  
Tao Hu ◽  
...  

Canopy species need to shift their adaptive strategy to acclimate to very different light environments as they grow from seedlings in the understory to adult trees in the canopy. However, research on how to quantitively detect ecological strategy shifts in plant ontogeny is scarce. In this study, we hypothesize that changes in light and tree height levels induce transitions in ecological strategies, and growth phases representing different adaptive strategies can be classified by leaf trait variation. We examined variations in leaf morphological and physiological traits across a vertical ambient light (represented by the transmittance of diffuse light, %TRANS) and tree height gradient in Parashorea chinensis, a large canopy tree species in tropical seasonal rainforest in Southwestern China. Multivariate regression trees (MRTs) were used to detect the split points in light and height gradients and classify ontogenetic phases. Linear piecewise regression and quadratic regression were used to detect the transition point in leaf trait responses to environmental variation and explain the shifts in growth phases and adaptive strategies. Five growth phases of P. chinensis were identified based on MRT results: (i) the vulnerable phase, with tree height at less than 8.3 m; (ii) the suppressed phase, with tree height between 8.3 and 14.9 m; (iii) the growth release phase, with tree height between 14.9 and 24.3 m; (iv) the canopy phase, with tree height between 24.3 and 60.9 m; and (v) the emergent phase, with tree height above 60.9 m. The suppressed phase and canopy phase represent “stress-tolerant” and “competitive” strategies, respectively. Light conditions drive the shift from the “stress-tolerant” to the “competitive” strategy. These findings help us to better understand the regeneration mechanisms of canopy species in forests.


2021 ◽  
Author(s):  
Thais R. Pfeilsticker ◽  
Renata S. O. Buzatti ◽  
André C. Muniz ◽  
Marcelo L. Bueno ◽  
José P. Lemos‐Filho ◽  
...  

2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208512 ◽  
Author(s):  
Matheus L. Souza ◽  
Alexandre A. Duarte ◽  
Maria B. Lovato ◽  
Marcilio Fagundes ◽  
Fernando Valladares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document