Functional diversity response to geographic and experimental precipitation gradients varies with plant community type

2021 ◽  
Author(s):  
Xiaoan Zuo ◽  
Shenglong Zhao ◽  
Huan Cheng ◽  
Ya Hu ◽  
Shaokun Wang ◽  
...  
Author(s):  
Jennifer Brenda Landesmann ◽  
Florencia Tiribelli ◽  
Juan Paritsis ◽  
Thomas Thorstein Veblen ◽  
Thomas Kitzberger

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1113
Author(s):  
Thomas A. Monaco ◽  
Kevin L. Gunnell

Woodland encroachment is a global issue linked to diminished ecosystem services, prompting the need for restoration efforts. However, restoration outcomes can be highly variable, making it difficult to interpret the ecological benefits and risks associated with woodland-reduction treatments within semiarid ecosystems. We addressed this uncertainty by assessing the magnitude and direction of vegetation change over a 15-year period at 129 sagebrush (Artemisia spp.) sites following pinyon (Pinus spp.) and juniper (Juniperus spp.) (P–J) reduction. Pretreatment vegetation indicated strong negative relationships between P–J cover and the abundance of understory plants (i.e., perennial grass and sagebrush cover) in most situations and all three components differed significantly among planned treatment types. Thus, to avoid confounding pretreatment vegetation and treatment type, we quantified overall treatment effects and tested whether distinct response patterns would be present among three dominant plant community types that vary in edaphic properties and occur within distinct temperature/precipitation regimes using meta-analysis (effect size = lnRR = ln[posttreatment cover/pretreatment cover]). We also quantified how restoration seedings contributed to overall changes in key understory vegetation components. Meta-analyses indicated that while P–J reduction caused significant positive overall effects on all shrub and herbaceous components (including invasive cheatgrass [Bromus tectorum] and exotic annual forbs), responses were contingent on treatment- and plant community-type combinations. Restoration seedings also had strong positive effects on understory vegetation by augmenting changes in perennial grass and perennial forb components, which similarly varied by plant community type. Collectively, our results identified specific situations where broad-scale efforts to reverse woodland encroachment substantially met short-term management goals of restoring valuable ecosystem services and where P–J reduction disposed certain plant community types to ecological risks, such as increasing the probability of native species displacement and stimulating an annual grass-fire cycle. Resource managers should carefully weigh these benefits and risks and incorporate additional, appropriate treatments and/or conservation measures for the unique preconditions of a given plant community in order to minimize exotic species responses and/or enhance desirable outcomes.


2020 ◽  
Vol 82 (4) ◽  
pp. 276-292
Author(s):  
Julien Lewis ◽  
Marc Milne ◽  
Charles Stephen ◽  
Daniel Dourson

Sinkholes are a well-known, but poorly studied, aspect of karst environments. In 2015, the Hoosier National Forest in southern Indiana, USA, commissioned a study of sinkhole habitats to assess their ecological role. The ecosystems of 26 sinkholes were evaluated to determine if sinkhole floor biological communities and species richness were a function of the surrounding plant community. Each sinkhole was sampled four times for five target groups of invertebrates at intervals of approximately three months, for a total of 104 visits. The sampling resulted in finding 140 taxa, including 31 land snails, 14 millipedes, 3 terrestrial isopods, 83 spiders and 9 pseudoscorpions. Of exceptional note were at least 12 new state records and a probable new species of pseudoscorpion. Several of these species appear to be endemic to sinkhole habitats. A link was confirmed between species richness and the surrounding plant community, specifically that the highest biodiversity was found in sinkholes surrounded by native deciduous forest, followed by native glades. Sinkholes in fields from which deciduous forest had been removed possessed markedly decreased species diversity, as did non-native plantings of pines. Sinkhole habitats had a significantly higher species richness than adjacent non-sinkhole control sites. Moreover, the arthropod communities that were found in each sinkhole within each plant community type were different from each other and the surrounding non-sinkhole areas. These data suggest that sinkholes are more than just depressions in epigean landscapes, but possess unique invertebrate communities linked to the surrounding plant community.


2021 ◽  
Author(s):  
Amy Lee Slender ◽  
Marina Louter ◽  
Steven A Myers ◽  
Tessa Bradford ◽  
Michael G Gardner ◽  
...  

Context In the era of the Anthropocene, habitat loss and environmental change threaten the persistence of many species. Genotyping-By-Sequencing (GBS) is a useful molecular tool for understanding how patterns of gene flow are associated with contemporary habitat distributions that may be affected by environmental change. Two parapatric subspecies of the threatened thick-billed grasswren (TBGW; Amytornis modestus) more frequently occur in different plant communities. As such, a preference for plant community type could reduce subspecific introgression and increase genetic diversity at the parapatric boundary. Aims We aimed to measure gene flow within and among two TBGW subspecies and tested whether divergent genomic markers were associated with plant community type. Methods We sequenced 118 individuals from either of the two TBGW subspecies or in the region of parapatry and identified 7583 SNPs through ddRADseq. Key results We found evidence of asymmetric gene flow and a genomic pattern of isolation-by-distance. There were sixteen genomic outliers correlated with plant community type (regardless of location). Conclusions These findings show that plant community type does not prevent introgression in one subspecies (A. m. raglessi), but low dispersal and habitat heterogeneity could contribute to the maintenance of distinct subspecific morphotypes. Local adaptation in different plant community types could also provide a mechanism for future divergence. Implications We suggest subspecific introgression could increase genetic variation and the adaptive potential of the species, facilitating species persistence under conditions of climate change.


2012 ◽  
Vol 197 (3) ◽  
pp. 1002-1011 ◽  
Author(s):  
Ann Milbau ◽  
Anna Shevtsova ◽  
Nora Osler ◽  
Maria Mooshammer ◽  
Bente J. Graae

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alexia Stokes ◽  
Guillermo Angeles ◽  
Fabien Anthelme ◽  
Eduardo Aranda-Delgado ◽  
Isabelle Barois ◽  
...  

Abstract Objectives Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level. We collected data to investigate how elevation affects belowground community traits and soil microbial and faunal communities. This dataset comprises data from a temperate climate in France and a twin study was performed in a tropical zone in Mexico. Data description The paper describes soil physical and chemical properties, climatic variables, plant community composition and species abundance, plant community traits, soil microbial functional diversity and macrofaunal abundance and diversity. Data are provided for six elevations (1400–2400 m) ranging from montane forest to alpine prairie. We focused on soil biophysical properties beneath three dominant plant species that structure local vegetation. These data are useful for understanding how shifts in vegetation communities affect belowground processes, such as water infiltration, soil aggregation and carbon storage. Data will also help researchers understand how plant communities adjust to a changing climate/environment.


Sign in / Sign up

Export Citation Format

Share Document