Differences in bee community composition between restored and remnant prairies are more strongly linked to forb community differences than landscape differences

Author(s):  
Ian G. Lane ◽  
Zachary M. Portman ◽  
Christina H. Herron‐Sweet ◽  
Gabriella L. Pardee ◽  
Daniel P. Cariveau
2019 ◽  
Author(s):  
Alexander James Austin ◽  
Lori Lawson-Handley ◽  
James Gilbert

Understanding the decline in bee populations and their plant mutualists is of paramount concern for ecosystem health, as well as our future food security. Intensive farming practices are one of the major drivers behind such declines. Organic farming is one of the principal alternatives to conventional practices yet the evidence for its effects are mixed, with some studies showing limited benefits. We conducted bee and floral surveys on 10 paired organic and conventional farms across Yorkshire, UK, to investigate how farming practice influenced the abundance, richness and community composition of bees and flowering plants. Firstly, we found that species richness for flowering plants and bees was similar across organic and conventional farms. Floral composition differed between organic and conventional farms with the greatest differences seen in May and June, whereas bee community composition was similar among farming practices. Secondly, both bee and floral abundance were higher in organic farms. Peaks in floral abundance, and corresponding bee abundance, occurred in particular months, most notably in July, with abundance during the rest of the season being similar across both farming practices. Synthesis and applications: Our results suggest that higher floral availability on organic farms corresponds with increased bee abundance. Of particular importance was the higher floral abundance during spring, in the pollinator 'hungry gap', where floral resources are traditionally scarce. However, conventional farms performed comparably to organic farms across the rest of the season, as well as showing similar levels of species richness, diversity and species composition for both flowering plants and bees. We suggest that targeted management on conventional farms, aimed at boosting floral abundance in the spring, when floral abundance is low, could allow conventional farms to make up the shortfall. Additionally, focusing on increasing the diversity of flowering plants, in terms of both phenology and nutritional composition, for both adult bees and their larvae, could improve bee community diversity across both farming systems.


2017 ◽  
Vol 13 (11) ◽  
pp. 20170515 ◽  
Author(s):  
Katherine R. Urban-Mead

Plant–bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristin M. Conrad ◽  
Valerie E. Peters ◽  
Sandra M. Rehan

AbstractInsect pollination is among the most essential ecosystem services for humanity. Globally, bees are the most effective pollinators, and tropical bees are also important for maintaining tropical biodiversity. Despite their invaluable pollination service, basic distributional patterns of tropical bees along elevation gradients are globally scarce. Here, we surveyed bees at 100 m elevation intervals from 800 to 1100 m elevation in Costa Rica to test if bee abundance, community composition and crop visitor assemblages differed by elevation. We found that 18 of 24 bee species spanning three tribes that represented the most abundantly collected bee species showed abundance differences by elevation, even within this narrow elevational gradient. Bee assemblages at the two crop species tested, avocado and squash, showed community dissimilarity between high and low elevations, and elevation was a significant factor in explaining bee community composition along the gradient. Stingless bees (Tribe Meliponini) were important visitors to both crop species, but there was a more diverse assemblage of bees visiting avocado compared to squash. Our findings suggest that successful conservation of tropical montane bee communities and pollination services will require knowledge of which elevations support the highest numbers of each species, rather than species full altitudinal ranges.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2019 ◽  
Vol 83 (3) ◽  
pp. 295-308
Author(s):  
MG Weinbauer ◽  
S Suominen ◽  
J Jezbera ◽  
ME Kerros ◽  
S Marro ◽  
...  

2020 ◽  
Vol 637 ◽  
pp. 159-180
Author(s):  
ND Gallo ◽  
M Beckwith ◽  
CL Wei ◽  
LA Levin ◽  
L Kuhnz ◽  
...  

Natural gradient systems can be used to examine the vulnerability of deep-sea communities to climate change. The Gulf of California presents an ideal system for examining relationships between faunal patterns and environmental conditions of deep-sea communities because deep-sea conditions change from warm and oxygen-rich in the north to cold and severely hypoxic in the south. The Monterey Bay Aquarium Research Institute (MBARI) remotely operated vehicle (ROV) ‘Doc Ricketts’ was used to conduct seafloor video transects at depths of ~200-1400 m in the northern, central, and southern Gulf. The community composition, density, and diversity of demersal fish assemblages were compared to environmental conditions. We tested the hypothesis that climate-relevant variables (temperature, oxygen, and primary production) have more explanatory power than static variables (latitude, depth, and benthic substrate) in explaining variation in fish community structure. Temperature best explained variance in density, while oxygen best explained variance in diversity and community composition. Both density and diversity declined with decreasing oxygen, but diversity declined at a higher oxygen threshold (~7 µmol kg-1). Remarkably, high-density fish communities were observed living under suboxic conditions (<5 µmol kg-1). Using an Earth systems global climate model forced under an RCP8.5 scenario, we found that by 2081-2100, the entire Gulf of California seafloor is expected to experience a mean temperature increase of 1.08 ± 1.07°C and modest deoxygenation. The projected changes in temperature and oxygen are expected to be accompanied by reduced diversity and related changes in deep-sea demersal fish communities.


Sign in / Sign up

Export Citation Format

Share Document