bee community
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 32)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Vera Wilder Pfeiffer ◽  
David W. Crowder ◽  
Janet Silbernagel

Abstract Wild bee communities persist in cities despite major disruption of nesting and food resources by urban development. Bee diversity and abundance is key for urban agriculture and maintenance of plant diversity, and assessing what aspects of cities enhance bee populations will promote our capacity to retain and provision bee habitat. Here, we assessed how variation in land cover and neighborhood development history affected bee communities in the midwestern US urban landscape of Madison, Wisconsin. We sampled bee communities across 38 sites with relatively high (> 55%) or low (< 30%) levels of impervious surface, and assessed effects of land use and neighborhood development history on bee abundance and species richness. We show abundance and richness of bees was lower in recently developed neighborhoods, with particularly strong negative effects on soil nesting bees. Soil nesting bees and bee community richness decreased as cover of impervious surface increased, but above ground nesting bees were minimally impacted. Bee community similarity varied spatially and based on dissimilar local land cover, only for soil nesting bees, and the overall bee community. Impervious surface limited bee abundance and diversity, but new neighborhoods were associated with greater negative effects. We suggest that enhancing the structural diversity of new neighborhoods in urban ecosystems may imitate the structural benefits of older neighborhoods for bee populations.


2021 ◽  
Author(s):  
Andrew Simon ◽  
Brian M. Starzomski

Abstract ContextHabitat loss threatens to exacerbate climate change impacts on pollinator communities, particularly in Mediterranean-type ecosystems where late season floral resource availability is limited by seasonal drought. While gardens have been found to supplement floral resources in water-limited urban landscapes, less is known about the role of natural habitat diversity in sustaining late season floral resources in more intact landscapes. ObjectivesWe investigated the importance of habitat integrity and diversity for bumble bees in a water-limited ecosystem, observing bumble bee community response to seasonal drought across gradients of disturbance and soil moisture.MethodsWe applied hierarchical models to estimate the effects of local site conditions versus landscape scale estimates of matrix habitat on bumble bee abundance. Floral resources, soil moisture, and other environmental variables were sampled along randomly distributed belt transects. Geospatial estimates of matrix habitat were derived from terrestrial ecosystem data. Bumble bees were sampled with blue vane traps.ResultsIn the late season we found that modified wet areas supported more floral resources and bumble bee workers as compared to dry semi-natural environments. Wetlands also supported more late season floral resources and bumble bee workers, though the latter effect was not significant. Despite higher levels of late season floral resources in modified wet environments, modified matrix habitat was negatively associated, and natural matrix positively associated, with workers in June and late-flying queens in July and August. We also detected differences in bumble bee community composition in disturbed versus undisturbed environments.ConclusionsThough wet modified habitats sustained the highest levels of late season floral resource availability and worker abundances in our study, bumble bee diversity and abundance were limited primarily by the availability of natural matrix habitat at the landscape scale. The conservation of natural habitat integrity and diversity can help support critical nesting and foraging habitat, and should be prioritized in efforts to foster the resilience of pollinator communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristin M. Conrad ◽  
Valerie E. Peters ◽  
Sandra M. Rehan

AbstractInsect pollination is among the most essential ecosystem services for humanity. Globally, bees are the most effective pollinators, and tropical bees are also important for maintaining tropical biodiversity. Despite their invaluable pollination service, basic distributional patterns of tropical bees along elevation gradients are globally scarce. Here, we surveyed bees at 100 m elevation intervals from 800 to 1100 m elevation in Costa Rica to test if bee abundance, community composition and crop visitor assemblages differed by elevation. We found that 18 of 24 bee species spanning three tribes that represented the most abundantly collected bee species showed abundance differences by elevation, even within this narrow elevational gradient. Bee assemblages at the two crop species tested, avocado and squash, showed community dissimilarity between high and low elevations, and elevation was a significant factor in explaining bee community composition along the gradient. Stingless bees (Tribe Meliponini) were important visitors to both crop species, but there was a more diverse assemblage of bees visiting avocado compared to squash. Our findings suggest that successful conservation of tropical montane bee communities and pollination services will require knowledge of which elevations support the highest numbers of each species, rather than species full altitudinal ranges.


2021 ◽  
Author(s):  
Vera W Pfeiffer ◽  
David W Crowder ◽  
Janet Silbernagel

Wild bee communities persist in cities despite major disruption of nesting and food resources by urban development. Bee diversity and abundance is key for urban agriculture and maintenance of plant diversity, and assessing what aspects of cities enhance bee populations will promote our capacity to retain and provision bee habitat. Here, we assessed how variation in land cover and neighborhood development history affected bee communities in the midwestern US urban landscape of Madison, Wisconsin. We sampled bee communities across 38 sites with relatively high (> 55%) or low (< 30%) levels of impervious surface, and assessed effects of land use and neighborhood development history on bee abundance and species richness. We show abundance and richness of bees was lower in recently developed neighborhoods, with particularly strong negative effects on soil nesting bees. Soil nesting bees and bee community richness decreased as cover of impervious surface increased, but above ground nesting bees were minimally impacted. Bee community similarity varied spatially and based on dissimilar local land cover, only for soil nesting bees, and the overall bee community. Impervious surface limited bee abundance and diversity, but new neighborhoods were associated with greater negative effects. We suggest that enhancing the structural diversity of new neighborhoods in urban ecosystems may imitate the structural benefits of older neighborhoods for bee populations.


Author(s):  
Ian G. Lane ◽  
Zachary M. Portman ◽  
Christina H. Herron‐Sweet ◽  
Gabriella L. Pardee ◽  
Daniel P. Cariveau

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254072
Author(s):  
Sergio Osorio-Canadas ◽  
Noé Flores-Hernández ◽  
Tania Sánchez-Ortiz ◽  
Alfonso Valiente-Banuet

‘Mexical’ scrubland is a sclerophyllous evergreen Mediterranean-like vegetation occurring in the leeward slopes of the main Mexican mountain ranges, under tropical climate. This biome occupies an elevational range approximately from 1900 to 2600 meters above sea level, which frequently is the upper-most part of the mountains range. This puts it at risk of extinction in a scenario of global warming in which an upward retraction of this type of vegetation is expected. The Mexical remains one of the least studied ecosystems in Mexico. For instance, nothing is known about pollinator fauna of this vegetation. Our main objective is to make a first insight into the taxonomic identity of the bee fauna that inhabits this biome, and to study how it is distributed along the elevational gradient that it occupies. Our results highlight that elevation gradient negatively affects bee species richness and that this relationship is strongly mediated by temperature. Bee abundance had no significant pattern along elevational gradient, but shows a significant relationship with flower density. Interestingly, and contrary to previous works, we obtained a different pattern for bee richness and bee abundance. Bee community composition changed strongly along elevation gradient, mainly in relation to temperature and flower density. In a global warming scenario, as temperatures increases, species with cold preferences, occupying the highest part of the elevation gradient, are likely to suffer negative consequences (even extinction risk), if they are not flexible enough to adjust their physiology and/or some life-story traits to warmer conditions. Species occupying mid and lower elevations are likely to extend their range of elevational distribution towards higher ranges. This will foreseeably cause a new composition of species and a new scenario of interactions, the adjustment of which still leaves many unknowns to solve.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lázaro da Silva Carneiro ◽  
Willian Moura de Aguiar ◽  
Camila de Fátima Priante ◽  
Milton Cezar Ribeiro ◽  
Wilson Frantine-Silva ◽  
...  

Human activities have modified the landscape composition. The changes in the landscape structure can be evaluated by metrics, which are influenced, among other factors, by the number of cover classes used for the landscape classification (thematic resolution). In high thematic resolutions, landscape covers that can influence biological responses are identified and detailed. In low thematic resolutions, this detail level is lower because it aggregates different landscape covers in a few classes. However, how the thematic resolution influences our ability to understand landscape structure on biodiversity is poorly explored, particularly for pollinators. Here we asked how thematic resolution affects the explanatory power of landscape composition on explaining Euglossini bees (richness and abundance) within 15 landscapes composed mainly of coffee and pasture. To address this issue, we quantified the association between five attributes of the euglossine bee community and landscape composition: landscape cover classes (%) and landscape heterogeneity. Moreover, we also evaluated how the thematic resolution influences bee responses to landscape structure. We found a strong and positive influence of landscape heterogeneity in low thematic resolutions (i.e., few cover classes on maps) over the richness and rare species abundance. We also observed that- in addition to the forest cover in the landscape- the pasture cover (%) quantified in high thematic resolution positively influenced the total abundance and abundance of common and intermediate species. Our study highlights the importance of maintaining compositional heterogeneity for the orchid bee community in agroecosystems, and forest cover for the biological requirements and conservation of these pollinators. Moreover, the use of different thematic resolutions showed how specific types of landscape covers influence the euglossine community attributes. This can highlight the species preferences for habitats and landscape covers. Thus, we call the attention of landscape ecologists to the importance of the definition of thematic resolution, as our ability to quantify the association between biological responses and landscape structure may be influenced by the number of classes used when building thematic maps.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Marirose P. Kuhlman ◽  
Skyler Burrows ◽  
Daniel L. Mummey ◽  
Philip W. Ramsey ◽  
Philip G. Hahn

Sign in / Sign up

Export Citation Format

Share Document