scholarly journals Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

2017 ◽  
Vol 106 (2) ◽  
pp. 655-670 ◽  
Author(s):  
Camille L. Stagg ◽  
Melissa M. Baustian ◽  
Carey L. Perry ◽  
Tim J. B. Carruthers ◽  
Courtney T. Hall
Wetlands ◽  
2020 ◽  
Vol 40 (6) ◽  
pp. 2785-2797
Author(s):  
Qingyuan Lu ◽  
Lixin Pei ◽  
Siyuan Ye ◽  
Edward A. Laws ◽  
Hans Brix

2001 ◽  
Vol 10 (6) ◽  
pp. 639-660 ◽  
Author(s):  
Jacques Gignoux ◽  
Joanna House ◽  
David Hall ◽  
Dominique Masse ◽  
Hassan B. Nacro ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


1967 ◽  
Vol 26 (2) ◽  
pp. 269-276 ◽  
Author(s):  
W. O. Enwezor

2014 ◽  
Vol 52 (12) ◽  
pp. 1072-1077 ◽  
Author(s):  
Rehemanjiang Wufuer ◽  
Ying Liu ◽  
Shuyong Mu ◽  
Wenjuan Song ◽  
Xue Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document