scholarly journals High‐quality genome‐scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities

2019 ◽  
Vol 22 (1) ◽  
pp. 255-269 ◽  
Author(s):  
Juan Nogales ◽  
Joshua Mueller ◽  
Steinn Gudmundsson ◽  
Francisco J. Canalejo ◽  
Estrella Duque ◽  
...  
2020 ◽  
Author(s):  
Vetle Simensen ◽  
André Voigt ◽  
Eivind Almaas

AbstractThe long-chain, ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential for humans and animals, including marine fish species. Presently, the primary source of these PUFAs is fish oils. As the global production of fish oils appears to be reaching its limits, alternative sources of high-quality ω-3 PUFAs is paramount to support the growing aquaculture industry. Thraustochytrids are a group of heterotrophic protists able to synthesize and accrue large amounts of essential ω-3 PUFAs, including EPA and DHA. Thus, the thraustochytrids are prime candidates to solve the increasing demand for ω-3 PUFAs using microbial cell factories. However, a systems-level understanding of their metabolic shift from cellular growth into lipid accumulation is, to a large extent, unclear. Here, we reconstructed a high-quality genome-scale metabolic model of the thraustochytrid Aurantiochytrium sp. T66 termed iVS1191. Through iterative rounds of model refinement and extensive manual curation, we significantly enhanced the metabolic scope and coverage of the reconstruction from that of previously published models, making considerable improvements with stoichiometric consistency, metabolic connectivity, and model annotations. We show that iVS1191 is highly consistent with experimental growth data, reproducing in vivo growth phenotypes as well as specific growth rates on minimal carbon media. The availability of iVS1191 provides a solid framework for further developing our understanding of T66’s metabolic properties, as well as exploring metabolic engineering and process-optimization strategies in silico for increased ω-3 PUFA production.


2021 ◽  
Author(s):  
Lin Lu ◽  
Feilong Guo ◽  
Zhichao Zhang ◽  
Lijun Pan ◽  
Yu Hao ◽  
...  

Abstract Wheat (Triticum aestivum) is one of the most important staple crops. The necrotrophic binucleate fungus Rhizoctonia cerealis is the causal agent for the devastating disease wheat sharp eyespot and additional diseases of other agricultural crops and bioenergy plants. In this study, we present the first high-quality genome assembly of R. cerealis Rc207, a highly aggressive strain isolated from wheat. The genome encodes expand and diverse sets of virulence-related proteins, especially secreted effectors, carbohydrate-active enzymes (CAZymes), metalloproteases, Cytochrome P450 (CYP450), and secondary metabolite-associated enzymes. Many of these genes, in particular those encoding secretory proteins and CYP450, showed markedly up-regulation during infection in wheat. Of 831 candidate secretory effectors, ten up-regulated secretory proteins, such as CAZymes, metalloproteases and antigens, were functionally validated as virulence factors required for the fungal infection in wheat. Further intra-species and inter-species comparative genomics analyses showed that repeat sequences, accounting for 17.87% of the genome, are the major driving force for the genome evolution, and frequently intraspecific gene duplication contributes to expansion of pathogenicity-related gene families. This is the first genome-scale investigation elucidating the pathogenesis mechanisms and evolutionary landscape of R. cerealis. Our results provide essential tools for further development of effective disease control strategies.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Francine Piubeli ◽  
Manuel Salvador ◽  
Montserrat Argandoña ◽  
Joaquín J. Nieto ◽  
Vicente Bernal ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Jared T. Broddrick ◽  
Richard Szubin ◽  
Charles J. Norsigian ◽  
Jonathan M. Monk ◽  
Bernhard O. Palsson ◽  
...  

Author(s):  
Hui Zhang ◽  
Yuexing Wang ◽  
Ce Deng ◽  
Sheng Zhao ◽  
Peng Zhang ◽  
...  

Author(s):  
Pu Liu ◽  
Wang Xiaojie ◽  
Dong Hongjie ◽  
Jianbin Lan ◽  
Kuan Liang ◽  
...  

Diaporthe spp. are critical plant pathogens that cause wood cankers, wilt, dieback, and fruit rot in a wide variety of economic plant hosts and are regarded as one of the most acute threats faced by kiwifruit industry worldwide. Diaporthe phragmitis strain NJD1 is a highly pathogenic isolate of soft rot of kiwifruit. Here, we present a high-quality genome-wide sequence of D. phragmitis NJD1 that was assembled into 28 contigs containing a total size of 58.33 Mb and N50 length of 3.55 Mb. These results lay a solid foundation for understanding host–pathogen interaction and improving disease management strategies.


Sign in / Sign up

Export Citation Format

Share Document