Symbiotic germination and development of fully mycoheterotrophic plants convergently targeting similar Glomeraceae taxa

Author(s):  
Kenji Suetsugu ◽  
Hidehito Okada
2021 ◽  
Vol 12 ◽  
Author(s):  
Hans Jacquemyn ◽  
Rein Brys ◽  
Michael Waud ◽  
Alexandra Evans ◽  
Tomáš Figura ◽  
...  

Partial mycoheterotrophy, the ability of plants to obtain carbon from fungi throughout their life cycle in combination with photosynthesis, appears to be more common within the Plant Kingdom than previously anticipated. Recent studies using stable isotope analyses have indicated that isotope signatures in partially mycoheterotrophic plants vary widely among species, but the relative contributions of family- or species-specific characteristics and the identity of the fungal symbionts to the observed differences remain unclear. Here, we investigated in detail mycorrhizal communities and isotopic signatures in four co-occurring terrestrial orchids (Platanthera chlorantha, Epipactis helleborine, E. neglecta and the mycoheterotrophic Neottia nidus-avis). All investigated species were mycorrhizal generalists (i.e., associated with a large number of fungi simultaneously), but mycorrhizal communities differed significantly between species. Mycorrhizal communities associating with the two Epipactis species consisted of a wide range of fungi belonging to different families, whereas P. chlorantha and N. nidus-avis associated mainly with Ceratobasidiaceae and Sebacinaceae species, respectively. Isotopic signatures differed significantly between both Epipactis species, with E. helleborine showing near autotrophic behavior and E. neglecta showing significant enrichment in both carbon and nitrogen. No significant differences in photosynthesis and stomatal conductance were observed between the two partially mycoheterotrophic orchids, despite significant differences in isotopic signatures. Our results demonstrate that partially mycoheterotrophic orchids of the genus Epipactis formed mycorrhizas with a wide diversity of fungi from different fungal families, but variation in mycorrhizal community composition was not related to isotope signatures and thus transfer of C and N to the plant. We conclude that the observed differences in isotope signatures between E. helleborine and E. neglecta cannot solely be explained by differences in mycorrhizal communities, but most likely reflect a combination of inherent physiological differences and differences in mycorrhizal communities.


1994 ◽  
Vol 159 (2) ◽  
pp. 291-295 ◽  
Author(s):  
K. G. Wilkinson ◽  
K. W. Dixon ◽  
K. Sivasithamparam ◽  
E. L. Ghisalberti

Botany ◽  
2020 ◽  
Author(s):  
Janice Valencia-D. ◽  
William Mark Whitten ◽  
Kurt M Neubig

The chloroplast (plastid) controls carbon uptake, so its DNA sequence and function are highly conserved throughout the land plants. But for those that have alternative carbon supplies, the plastid genome is susceptible to suffer mutations in the photosynthetic genes and overall size reduction. Fully mycoheterotrophic plants receive organic carbon from their fungi partner, do not photosynthesize and also do not exhibit green coloration (or produce substantial quantities of chlorophyll). Epipactis helleborine (L.) Crantz exhibits all trophic modes from autotrophy to full mycoheterotrophy. Albinism is a stable condition in individuals of this species and does not prevent them from producing flowers and fruits. Here we assemble and compare the plastid genome of green and albino individuals. Our results show that there is still strong selective pressure in the plastid genome. Therefore, the few punctual differences among them, to our knowledge, do not affect any normal photosynthetic capability in the albino plant. These findings suggest that mutations or other genetically controlled processes in other genomes, or environmental conditions, are responsible for the phenotype.


2020 ◽  
Vol 21 (17) ◽  
pp. 6104 ◽  
Author(s):  
Juan Chen ◽  
Bo Yan ◽  
Yanjing Tang ◽  
Yongmei Xing ◽  
Yang Li ◽  
...  

Seeds of almost all orchids depend on mycorrhizal fungi to induce their germination in the wild. The regulation of this symbiotic germination of orchid seeds involves complex crosstalk interactions between mycorrhizal establishment and the germination process. The aim of this study was to investigate the effect of gibberellins (GAs) on the symbiotic germination of Dendrobium officinale seeds and its functioning in the mutualistic interaction between orchid species and their mycobionts. To do this, we used liquid chromatograph-mass spectrometer to quantify endogenous hormones across different development stages between symbiotic and asymbiotic germination of D. officinale, as well as real-time quantitative PCR to investigate gene expression levels during seed germination under the different treatment concentrations of exogenous gibberellic acids (GA3). Our results showed that the level of endogenous GA3 was not significantly different between the asymbiotic and symbiotic germination groups, but the ratio of GA3 and abscisic acids (ABA) was significantly higher during symbiotic germination than asymbiotic germination. Exogenous GA3 treatment showed that a high concentration of GA3 could inhibit fungal colonization in the embryo cell and decrease the seed germination rate, but did not significantly affect asymbiotic germination or the growth of the free-living fungal mycelium. The expression of genes involved in the common symbiotic pathway (e.g., calcium-binding protein and calcium-dependent protein kinase) responded to the changed concentrations of exogenous GA3. Taken together, our results demonstrate that GA3 is probably a key signal molecule for crosstalk between the seed germination pathway and mycorrhiza symbiosis during the orchid seed symbiotic germination.


Phytotaxa ◽  
2020 ◽  
Vol 436 (2) ◽  
pp. 157-166 ◽  
Author(s):  
KENJI SUETSUGU ◽  
AKIHIKO KINOSHITA

A new species of Sciaphila (Triuridaceae), S. kozushimensis Suetsugu, is described from Kozu Island, Izu Islands, Japan. The new species is similar to S. tosaensis in having unisexual flowers (the female towards the base of the rachis), perianth-segments without any appendages and club-shaped style that is as long as or slightly exceeds ovary in the flowering stage. However, it is distinguishable by smaller male flowers, wide and acuminate male perianth segments and somewhat dissimilar perianth segments. An illustration and molecular analysis based on ITS sequences of the new species are provided. A key to the Japanese Sciaphila is also provided for identification of these rare mycoheterotrophic plants.


Sign in / Sign up

Export Citation Format

Share Document