Determining the host-plant resistance mechanisms forMamestra brassicae(Lepidoptera:Noctuidae) pest in cabbage

2014 ◽  
Vol 164 (2) ◽  
pp. 270-285 ◽  
Author(s):  
M.E. Cartea ◽  
P. Soengas ◽  
T. Sotelo ◽  
R. Abilleira ◽  
P. Velasco
2003 ◽  
Vol 128 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Joseph J. Coombs ◽  
David S Douches ◽  
Wenbin Li ◽  
Edward J. Grafius ◽  
Walter L. Pett

The colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), is the leading insect pest of potato (Solanum tuberosum L.) in northern latitudes. Host plant resistance has the potential use in an integrated pest management program for control of colorado potato beetle. During the 1998 and 1999 seasons, field studies were conducted to compare natural (leptine glycoalkaloids and glandular trichomes), engineered (Bt-cry3A and Bt-cry5 transgenic potato lines), and combined (Bt-cry5+glandular trichomes) plant resistance mechanisms of potato for control of colorado potato beetle. Nine different potato clones representing five different host plant resistance mechanisms were evaluated under natural colorado potato beetle infestation at the Montcalm Research Farm in Entrican, Michigan. The Bt-cry3A transgenic lines, the high leptine line (USDA8380-1), and the high foliar glycoalkaloid line (ND5873-15) were most effective for controlling defoliation by colorado potato beetle adults and larvae. The Bt-cry5 line (SPc5-G2) was not as effective as the Bt-cry3A transgenic lines ('Russet Burbank Newleaf,' RBN15, and YGc3.1). The glandular trichome (NYL235-4) and Bt-cry5+glandular trichome lines proved to be ineffective. Significant rank correlations for the potato lines between the two years were observed for egg masses, second and third instar, and fourth instar seasonal cumulative mean number of individuals per plant, and defoliation. Egg mass and first instar seasonal cumulative mean number of individuals per plant were not strong indicators of host plant resistance in contrast to second and third instars or adults. Based on these results, the Bt-cry3A transgenic lines, the high leptine line, and the high total glycoalkaloid line are effective host plant resistance mechanisms for control of colorado potato beetle.


2005 ◽  
Vol 130 (6) ◽  
pp. 857-864 ◽  
Author(s):  
Joseph J. Coombs ◽  
David S. Douches ◽  
Susannah G. Cooper ◽  
Edward J. Grafius ◽  
Walter L. Pett ◽  
...  

Colorado potato beetle (Leptinotarsa decemlineata Say) is the leading insect pest of potato (Solanum tuberosum L.) in northern latitudes. Host plant resistance is an important tool in an integrated pest management program for controlling insect pests. Field studies were conducted to compare natural host plant resistance mechanisms (glandular trichomes and Solanum chacoense Bitter-derived resistance), engineered [Bacillus thuringiensis (Bt) Berliner Bt-cry3A], and combined (glandular trichomes + Bt-cry3A and S. chacoense-derived resistance + Bt-cry3A transgenic potato lines) sources of resistance for control of colorado potato beetle. Six different potato clones representing five different host plant resistance mechanisms were evaluated for 2 years in a field situation under natural colorado potato beetle pressure in Michigan and New York, and in a no-choice field cage study in Michigan. In the field studies, the S. chacoense-derived resistance line, Bt-cry3A transgenic, and combined resistance lines were effective in controlling defoliation by colorado potato beetle adults and larvae. Effectively no feeding was observed in the Bt-cry3A transgenic lines. The glandular trichome line suffered less defoliation than the susceptible control, but had greater defoliation than the Bt-cry3A transgenic lines and the S. chacoense-derived resistance line. In the no-choice cage study, the Bt-cry3A transgenic lines and the combined resistance lines were effective in controlling feeding by colorado potato beetle adults and larvae with no defoliation observed. The S. chacoense-derived resistance line and the glandular trichome line suffered less defoliation than the susceptible control. Based on the results of the field trials and no-choice field cage studies, these host plant resistance mechanisms could be used to develop potato varieties for use in a resistance management program for control of colorado potato beetle.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1705
Author(s):  
Niranjanadevi Jeevanandham ◽  
Nalini Ramiah ◽  
Vanniarajan Chockalingam ◽  
Ramalingam Jegadeesan

There is an urgent need to enhance agricultural production as well as productivity to meet the food demand of the growing population, estimated to be 10 billion by 2050, using a holistic and sustainable approach. The daily food sources for almost three-fourth of the global population, cereals and millets, are prone to several biotic factors and abiotic pressures. In particular, cereals and millet cultivation are limited by the polyphagous pink stem borer, Sesamia inferens Walker (Lepidoptera:Noctuidae) gaining national importance, since its larvae and pupae are concealed within the stem, none of the management measures have been found effective in controlling the menace. However, host plant resistance (HPR) is a reasonable and ecologically safe method wherein resistance mechanisms of crops could lower the stem borer infestation. The foremost challenge in understanding the mechanism would be to detecting the genes of interest in the crop using novel biotechnological approaches. The fundamental criterion for developing insect-resistant lines relies on recognizing the mechanism of plant resistance. The entire life cycle of this group of borers is completed or hidden within the stem, posing a hurdle in their management. Thus, molecular markers and Quantitative Trait Locus (QTL) mapping offer a more efficient approach to entomologists and plant breeders wherein they can work with traits like QTLs for stem borer resistance. In this review, an attempt has been made to provide an extensive summary of the host range and crop losses due to this borer, besides its taxonomic position, geographic distribution, bionomics, genetics of resistance, and molecular perspectives.


2020 ◽  
Vol 113 (6) ◽  
pp. 2972-2978 ◽  
Author(s):  
Ashley D Yates-Stewart ◽  
Adrian Pekarcik ◽  
Andy Michel ◽  
Joshua J Blakeslee

Abstract Host-plant resistance (HPR) is an important tool for pest management, affording both economic and environmental benefits. The mechanisms of aphid resistance in soybean are not well understood, but likely involve the induction of the jasmonic acid (JA) pathway, and possibly other phytohormone signals involved in plant defense responses. Despite the efficacy of aphid resistance in soybean, virulent aphids have overcome this resistance through mostly unknown mechanisms. Here, we have used metabolomic tools to define the role of plant phytohormones, especially the JA pathway, in regulating interactions between aphid-resistant soybean and virulent aphids. We hypothesized that virulent aphids avoid or suppress the JA pathway to overcome aphid resistance. Our results suggested that aphid-resistant soybean increased accumulation of JA-isoleucine (JA-Ile) only when infested with avirulent aphids; virulent aphids did not cause induction of JA-Ile. Further, applying JA-Ile to aphid-resistant soybean reduced subsequent virulent aphid populations. The concentrations of other phytohormones remained unchanged due to aphid feeding, highlighting the importance of JA-Ile in this interaction. These results increase our knowledge of soybean resistance mechanisms against soybean aphids and contribute to our understanding of aphid virulence mechanisms, which will in turn promote the durability of HPR.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1384
Author(s):  
Dinar S. C. Wahyuni ◽  
Young Hae Choi ◽  
Kirsten A. Leiss ◽  
Peter G. L. Klinkhamer

Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.


2021 ◽  
Vol 22 (11) ◽  
pp. 5941
Author(s):  
Abigail Ngugi-Dawit ◽  
Isaac Njaci ◽  
Thomas J.V. Higgins ◽  
Brett Williams ◽  
Sita R. Ghimire ◽  
...  

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an economically important legume playing a crucial role in the semi-arid tropics. Pigeonpea is susceptible to Helicoverpa armigera (Hübner), which causes devastating yield losses. This pest is developing resistance to many commercially available insecticides. Therefore, crop wild relatives of pigeonpea, are being considered as potential sources of genes to expand the genetic base of cultivated pigeonpea to improve traits such as host plant resistance to pests and pathogens. Quantitative proteomic analysis was conducted using the tandem mass tag platform to identify differentially abundant proteins between IBS 3471 and ICPL 87 tolerant accession and susceptible variety to H. armigera, respectively. Leaf proteome were analysed at the vegetative and flowering/podding growth stages. H. armigera tolerance in IBS 3471 appeared to be related to enhanced defence responses, such as changes in secondary metabolite precursors, antioxidants, and the phenylpropanoid pathway. The development of larvae fed on an artificial diet with IBS 3471 lyophilised leaves showed similar inhibition with those fed on an artificial diet with quercetin concentrations with 32 mg/25 g of artificial diet. DAB staining (3,3’-diaminobenzidine) revealed a rapid accumulation of reactive oxygen species in IBS 3471. We conclude that IBS 3471 is an ideal candidate for improving the genetic base of cultivated pigeonpea, including traits for host plant resistance.


Planta ◽  
2021 ◽  
Vol 253 (2) ◽  
Author(s):  
Subramaniam Gopalakrishnan ◽  
Vadlamudi Srinivas ◽  
Nimmala Naresh ◽  
Sambangi Pratyusha ◽  
Sravani Ankati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document