Intensive care doctors’ preferences for arterial oxygen tension levels in mechanically ventilated patients

2018 ◽  
Vol 62 (10) ◽  
pp. 1443-1451 ◽  
Author(s):  
O. L. Schjørring ◽  
A. P. Toft‐Petersen ◽  
K. H. Kusk ◽  
P. Mouncey ◽  
E. E. Sørensen ◽  
...  
2011 ◽  
Vol 38 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Glenn Eastwood ◽  
Rinaldo Bellomo ◽  
Michael Bailey ◽  
Gopal Taori ◽  
David Pilcher ◽  
...  

2005 ◽  
Vol 114 (7) ◽  
pp. 504-508 ◽  
Author(s):  
Neil G. Hockstein ◽  
Erica R. Thaler ◽  
Yuanqing Lin ◽  
D. Daniel Lee ◽  
C. William Hanson

Objectives: Ventilator-associated pneumonia (VAP) is a frequent complication in patients in surgical intensive care units. Pneumonia scores, chest radiography, and bronchoscopy are all employed, but there is no gold standard test for the diagnosis of VAP. The electronic nose, a sensor of volatile molecules, is well suited to testing the breath of mechanically ventilated patients. Our objective was to determine the potential use of an electronic nose as a diagnostic adjunct in the detection of VAP. Methods: We performed a prospective study of mechanically ventilated patients in a surgical intensive care unit. Clinical data, including temperature, white blood cell count, character and quantity of tracheal secretions, ratio of partial pressure of arterial oxygen to fraction of inspired oxygen, and chest radiographs, were collected, and a pneumonia score between 0 and 10 was calculated. Exhaled gas was sampled from the expiratory limb of the ventilator circuit. The gases were assayed with a commercially available electronic nose. Multidimensional data reduction analysis was used to analyze the results. Results: Forty-four patients were studied. Fifteen patients had pneumonia scores of 7 or greater, and 29 patients had scores of 6 or less. With Fisher discriminant analysis and K—nearest neighbor analysis, the electronic nose was able to discriminate between the two groups. Conclusions: The electronic nose is a new technology that is inexpensive, noninvasive, and portable. We demonstrate its ability to predict pneumonia, based on a well-recognized scoring system. This technology promises to serve as a diagnostic adjunct in the management of VAP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinshu Katayama ◽  
Jun Shima ◽  
Ken Tonai ◽  
Kansuke Koyama ◽  
Shin Nunomiya

AbstractRecently, maintaining a certain oxygen saturation measured by pulse oximetry (SpO2) range in mechanically ventilated patients was recommended; attaching the INTELLiVENT-ASV to ventilators might be beneficial. We evaluated the SpO2 measurement accuracy of a Nihon Kohden and a Masimo monitor compared to actual arterial oxygen saturation (SaO2). SpO2 was simultaneously measured by a Nihon Kohden and Masimo monitor in patients consecutively admitted to a general intensive care unit and mechanically ventilated. Bland–Altman plots were used to compare measured SpO2 with actual SaO2. One hundred mechanically ventilated patients and 1497 arterial blood gas results were reviewed. Mean SaO2 values, Nihon Kohden SpO2 measurements, and Masimo SpO2 measurements were 95.7%, 96.4%, and 96.9%, respectively. The Nihon Kohden SpO2 measurements were less biased than Masimo measurements; their precision was not significantly different. Nihon Kohden and Masimo SpO2 measurements were not significantly different in the “SaO2 < 94%” group (P = 0.083). In the “94% ≤ SaO2 < 98%” and “SaO2 ≥ 98%” groups, there were significant differences between the Nihon Kohden and Masimo SpO2 measurements (P < 0.0001; P = 0.006; respectively). Therefore, when using automatically controlling oxygenation with INTELLiVENT-ASV in mechanically ventilated patients, the Nihon Kohden SpO2 sensor is preferable.Trial registration UMIN000027671. Registered 7 June 2017.


2018 ◽  
Vol 13 (3) ◽  
pp. 107-111 ◽  
Author(s):  
Avelino C Verceles ◽  
Waqas Bhatti

Conducting clinical research on subjects admitted to intensive care units is challenging, as they frequently lack the capacity to provide informed consent due to multiple factors including intensive care unit acquired delirium, coma, the need for sedation, or underlying critical illness. However, the presence of one or more of these characteristics does not automatically designate a potential subject as lacking capacity to provide their own informed consent. We review the ethical issues involved in obtaining informed consent for medical research from mechanically ventilated, critically ill patients, in addition to the concerns that may arise when a legally authorized representative is asked to provide informed consent on behalf of these patients.


Sign in / Sign up

Export Citation Format

Share Document