Reducing losses inflicted by insect pests on cashew, using weaver ants as a biological control agent

2015 ◽  
Vol 17 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Florence M. Anato ◽  
Rosine B. Wargui ◽  
Antonio A. C. Sinzogan ◽  
Joachim Offenberg ◽  
Appolinaire Adandonon ◽  
...  
2011 ◽  
Vol 43 (2) ◽  
pp. 269
Author(s):  
Behzad Habibpour ◽  
Amir Cheraghi ◽  
Mohammad Saeed Mossadegh

This article is the first report on the promising effect of an entomopathogenic fungus, <em>Metarhizium anisopliae</em> (Metschnikoff) Sorokin to control populations of <em>Microcerotermes diversus </em>Silvestri. Biological control is an alternative to the long-term usage of chemical pesticides.<em> M. anisopliae</em>, the causal agent of green muscardine disease of insects, is an important fungus in biological control of insect pests. Bait systems can eliminate entire colonies of subterranean termites. Baiting reduces adverse environmental impacts caused by organochlorine and organophosphate pesticides in the control of termites and creates sustainable protection of buildings against their invasion. Treated-sawdust bait was applied by two methods: a) combination of treated sawdust and untreated filter paper, and b) combination of treated sawdust and untreated sawdust. When combinations of treated sawdust and untreated sawdust were used, LC50 and LC90 were 8.4&times;106 and 3.9&times;107 (spore/ml), respectively. With the use of improved bait formula and more virulent strains, we hope to achieve better control of termite colonies and enable pathogens to become a useful element in the Integrated Pest Management system.


Author(s):  
I Ishak ◽  
L C Ng ◽  
M Haris-Hussain ◽  
J Jalinas ◽  
A B Idris ◽  
...  

Abstract Metarhizium anisopliae Metchnikoff (Hypocreales: Clavicipitaceae) is a fungal pathogen that causes disease in various insect pests, and it can be exploited and developed as a biological control agent to combat the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). The study on indigenous isolates is crucial especially for development of bioinsecticides in the future. The M. anisopliae strain called MET-GRA4 was tested for pathogenicity against adult red palm weevil and treated in vitro with different spore viabilities. The isolates exhibited pathogenicity with 100% mortality 21 d postinfection. The median lethal time (LT50) for 85% viable spores was 8.6 d, while 39% viable spores had an LT50 value of 21.37 d, with 92 and 16.6% mycosis, respectively. The species MET-GRA4 strain was molecularly characterized using ITS1 and ITS4 from pure culture (Isolate A), mass-produced spores (Isolate B), and infected red palm weevil cadavers (Isolate C). The DNA sequences obtained matched M. anisopliae sequences, with 99% similarity. This new isolate of M. anisopliae has potential as a targeted bioinsecticide for management of red palm weevil.


Author(s):  
Lucie Marquereau ◽  
Jean-Sébastien Cottineau ◽  
Olivier Fontaine ◽  
Frédéric Chiroleu ◽  
Bernard Reynaud ◽  
...  

Abstract Whiteflies are one of the major pests of tomato under greenhouses, and their control partly relies on biocontrol strategies. Among those biocontrol agents, parasitoids or predators are widely used. However, the introduction of a biocontrol agent in a new area is not trivial. For that reason, we investigated the use of a tropical native mirid, Nesidiocoris volucer (Hemiptera: Miridae), for the biological control of whiteflies among other insect pests on tomato crops under greenhouses in the subtropical island of La Réunion, France. Nesidiocoris volucer life history traits and plant injury were examined. Nymphs developed and survived between 15 and 30°C and required on average 49.41 days at 15°C and on average 10.50 days at 30°C to develop (nymph survival >94%). At 25°C, each female produced on average 65 eggs. Nesidiocoris volucer was able to feed on several prey species, but performed better on whiteflies than on spider mites or thrips. No N. volucer feeding injury was observed on tomato. Nesidiocoris volucer has also been found in tropical countries of Africa, and we believe that the data presented on this natural enemy could be of great importance for the biocontrol of whiteflies in tropical areas.


2007 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Chaerani Chaerani ◽  
Y. Suryadi ◽  
T.P. Priyatno ◽  
D. Koswanudin ◽  
U. Rahmat ◽  
...  

Isolation of Entomopathogenic Nematodes Steinernema and Heterorhabditis. Entomopathogenic nematodes from the genus Steinernema and Heterorhabditis (Rhabditida: Steinernematidae and Heterorhabditidae) are promising biological control agent of insect pests. Indigenous nematodes have been isolated and collected for the use in local biological control program of important insect pests. The nematodes were isolated using soil baiting method with insect larvae. Laboratory tests have shown that the mealworm larvae Tenebrio molitor (Coleoptera: Tenebrionidae) served as a good alternative to the standard insect bait, the greater wax moth larvae Galleria mellonella (Lepidoptera: Galleriidae) for isolation and maintenance of nematodes. Both nematodes were successfully isolated using T. molitor larvae from 13% soil samples (26 out of a total of 207) collected from 14 locations in West and Central Java and Lampung provinces in the period of 1993 until 2006. Heterorhabditis (9%) was more prevalent than Steinernema (4%). Both nematodes were successfully propagated on mealworm larvae.


Sign in / Sign up

Export Citation Format

Share Document