scholarly journals ISOLASI NEMATODA PATOGEN SERANGGA STEINERNEMA DAN HETERORHABDITIS

2007 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Chaerani Chaerani ◽  
Y. Suryadi ◽  
T.P. Priyatno ◽  
D. Koswanudin ◽  
U. Rahmat ◽  
...  

Isolation of Entomopathogenic Nematodes Steinernema and Heterorhabditis. Entomopathogenic nematodes from the genus Steinernema and Heterorhabditis (Rhabditida: Steinernematidae and Heterorhabditidae) are promising biological control agent of insect pests. Indigenous nematodes have been isolated and collected for the use in local biological control program of important insect pests. The nematodes were isolated using soil baiting method with insect larvae. Laboratory tests have shown that the mealworm larvae Tenebrio molitor (Coleoptera: Tenebrionidae) served as a good alternative to the standard insect bait, the greater wax moth larvae Galleria mellonella (Lepidoptera: Galleriidae) for isolation and maintenance of nematodes. Both nematodes were successfully isolated using T. molitor larvae from 13% soil samples (26 out of a total of 207) collected from 14 locations in West and Central Java and Lampung provinces in the period of 1993 until 2006. Heterorhabditis (9%) was more prevalent than Steinernema (4%). Both nematodes were successfully propagated on mealworm larvae.

Weed Science ◽  
1986 ◽  
Vol 34 (S1) ◽  
pp. 33-34 ◽  
Author(s):  
Paul E. Parker

The use of nematodes as biological control agents has been met with skepticism, partly due to the newness of the approach and also to the potential difficulties of using a parasitic worm as a control organism. Most of the attention directed towards nematodes as biological control agents has been focused on several species that act as insect parasites. Considerable headway has been achieved with several of these parasites, especially with those parasitic on wood-boring insect larvae. The insect gallery of wood-boring larvae provides an optimum microclimate for the nematode to survive and seek out its larval insect host. A system where this strategy has proved successful involves the use of the insect parasitic nematodeNeoaplectana carpocapsaeWeiser as a biological control agent for carpenterworms (Prionoxystus robinaePeck) in fig (Ficus cariaL.) orchards in California (6). Similar systems are being developed both here and abroad with the same nematode or a closely related genus or species. Many of these systems show promise (5).


2011 ◽  
Vol 43 (2) ◽  
pp. 269
Author(s):  
Behzad Habibpour ◽  
Amir Cheraghi ◽  
Mohammad Saeed Mossadegh

This article is the first report on the promising effect of an entomopathogenic fungus, <em>Metarhizium anisopliae</em> (Metschnikoff) Sorokin to control populations of <em>Microcerotermes diversus </em>Silvestri. Biological control is an alternative to the long-term usage of chemical pesticides.<em> M. anisopliae</em>, the causal agent of green muscardine disease of insects, is an important fungus in biological control of insect pests. Bait systems can eliminate entire colonies of subterranean termites. Baiting reduces adverse environmental impacts caused by organochlorine and organophosphate pesticides in the control of termites and creates sustainable protection of buildings against their invasion. Treated-sawdust bait was applied by two methods: a) combination of treated sawdust and untreated filter paper, and b) combination of treated sawdust and untreated sawdust. When combinations of treated sawdust and untreated sawdust were used, LC50 and LC90 were 8.4&times;106 and 3.9&times;107 (spore/ml), respectively. With the use of improved bait formula and more virulent strains, we hope to achieve better control of termite colonies and enable pathogens to become a useful element in the Integrated Pest Management system.


2017 ◽  
Vol 108 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Q. Li ◽  
S.V. Triapitsyn ◽  
C. Wang ◽  
W. Zhong ◽  
H.-Y. Hu

AbstractThe flee-weevil Orchestes steppensis Korotyaev (Coleoptera: Curculionidae) is a steppe eastern Palaearctic species, notable as a serious pest of elms (Ulmus spp., Ulmaceae), by feeding on the leaves (adults) or mining them heavily (larvae), especially of Ulmus pumila L. in Xinjiang, China. We have corrected the previous misidentifications of this weevil in China as O. alni (L.) or O. mutabilis Boheman and demonstrated that it is likely to be an invasive species in Xinjiang. Prior to this study, natural enemies of O. steppensis were unknown in Xinjiang. Resulting from field investigation and rearing in the laboratory during 2013–2016, seven parasitoid species were found to be primary and solitary, attacking larval and pupal stages of the host weevil. Pteromalus sp. 2 is the dominant species and also is the most competitive among the seven parasitoids, which could considered to be a perspective biological control agent of O. steppensis. Yet, the current control of this pest by the local natural enemies in Xinjiang is still currently inefficient, even though in 2016 parasitism was about 36% on U. pumila in Urumqi, so the potential for a classical biological control program against it needs to be further investigated, including an assessment of its parasitoids and other natural enemies in the native range of O. steppensis. The presented information on the natural enemies of this weevil can be also important for a potential classical biological control program against it in North America (Canada and USA), where it is a highly damaging and rapidly spreading invasive species.


EDIS ◽  
2013 ◽  
Vol 2013 (1) ◽  
Author(s):  
Rodrigo Diaz ◽  
Julio Medal ◽  
Kenneth Hibbard ◽  
Amy Roda ◽  
A. Fox ◽  
...  

Tropical soda apple is a prickly shrub native to South America. First reported in Glades Co., Florida in 1988, it later spread to Georgia, Alabama, Louisiana, Texas, Mississippi, Tennessee, North Carolina, and South Carolina. It is a major problem in pastures and conservation areas. Negative impacts of tropical soda apple include reduction of cattle stocking rates, competition with native plants, and the costs associated with its control. Dense thickets of the weed also can disrupt the movement of wildlife. This 4-page fact sheet provides a summary of the major steps of the successful biological control program against tropical soda apple in Florida. The article covers the importance of the weed, identification and biology of the biological control agent, rearing and release efforts, establishment and impact, and efforts to communicate the outcomes of the program to stakeholders. Written by R. Diaz, J. Medal, K. Hibbard, A. Roda, A. Fox, S. Hight, P. Stansly, B. Sellers, J. Cuda and W. A. Overholt, and published by the UF Department of Entomology and Nematology, November 2012. http://edis.ifas.ufl.edu/in971


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 580-589 ◽  
Author(s):  
S. Aghighi ◽  
L. Fontanini ◽  
P. B. Yeoh ◽  
G. E. St. J. Hardy ◽  
T. I. Burgess ◽  
...  

Human activities have had an adverse impact on ecosystems on a global scale and have caused an unprecedented redispersal of organisms, with both plants and pathogens moving from their regions of origin to other parts of the world. Invasive plants are a potential threat to ecosystems globally, and their management costs tens of billions of dollars per annum. Rubus anglocandicans (European blackberry) is a serious invasive species in Australia. Herbicide and cultural control methods are generally inefficient or require multiple applications. Therefore, a biological control program using stem and leaf rust strains is the main option in Australia. However, biological control using rusts has been patchy, as host factors, climate, and weather can alter the impact of the rust at different locations. In 2007, Yeoh and Fontanini noticed that blackberry plants on the banks of the Donnelly and Warren rivers in the southwest of Western Australia were dying in areas that were being regularly monitored for the impact of rust as a biological control agent. The symptoms on blackberry became known as the disease “blackberry decline”. Continuous and intensive investigations are required to discover the different biotic and abiotic components associated with specific declines in plant populations. The only agent so far introduced to Australia for the biological control of blackberry is the rust Phragmidium violaceum.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Velavan Viswakethu ◽  
Padmanaban Balakrishanan ◽  
Loganathan Murugan ◽  
Baskar Narayana swamy ◽  
Uma Subbaraya

Abstract Background Banana fruit scarring beetle (BFSB), Basilepta subcostata (Jac.) (Chrysomelidae:Coleoptera), is an important insect pest feeds on leaf and fingers, which affects the cosmetic value of the fruit. The pest is distributed in Assam, Bihar, West Bengal, Chhattisgarh, and North-eastern Hill regions of India. Results The pest is currently managed by foliar spray with insecticides. In order to identify eco-friendly control of the pest, attempts were made to isolate microbial agent and evaluate their potential to control the pest. A total of 27 entomopathogenic fugal isolates were obtained from Odoiporus longicollis (Oliver), Cosmopolites sordidus (Germar), Basilepta subcostata (Jac), and other insect Galleria mellonella (Fabr). Based on colony morphology, the collected fungal isolates were identified as Metarhizium spp. (17) and Beauveria spp. (10). Through ITS sequencing, the fungal isolates were further characterized at species level as B. bassiana (8), B. brongniartii (2), M. anisopliae (8), M. robertsii (6), M. guizhouense (2), and M. pinghaense (1). Their sequences were submitted in GenBank and obtained accession numbers. Among 27 isolates tested against B. subcostata under laboratory conditions, 3 isolates (M. anisopliae NRCBEPF-36, M. pinghaense NRCBEPF-7 and B. brongniartii NRCBEPF-27) recorded 100% beetle mortality, followed by 11 isolates with 95–99% and 13 isolates with 88–93% within 8 days of treatment. Conclusion This study highlights the two native North East India isolates B. brongniartii NRCBEPF-27 (MT151781) and M. anisopliae NRCBEPF-36 (MT140308) showed the significance to use as potential biocontrol agents against banana fruit scarring beetle B. subcostata. Further experiments under field conditions are required to evaluate their biological control efficacy against the pest.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Fatma Dolunay Erdoğuş

Abstract Background The rust red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae) is a serious pest of stored grains and grain products across the world. This beetle is hold a significant place in Turkey by causing damages on stored products. T. castaneum primarily attacks milled grain and its derivates. Entomopathogenic nematodes (EPNs) are regarded as extremely an important biological control agent. EPNs kills their hosts within 48 h by the bacteria they carry. Results Efficacies of 4 isolates of EPNs Steinernema carpocapsae (Tokat Bakisli 05), S. feltiae (Tokat-Emir), Heterorhabditis bacteriophora (TOK-20) and H. bacteriophora (11-KG) against T. castaneum was investigated under laboratory conditions. The experiments were carried out thrice with 10 replicates at 2 different temperatures (15 and 25 ºC). EPNs isolates were tested at 3 different concentrations (250, 500 and 1000 IJs/ml) with a pure water as control. The overall mortality caused by H. bacteriophora (Kg11) was significantly higher than the other EPN species. At 25 ºC, H. bacteriophora (Kg11) at the highest concentration (1000 IJs/ml) caused 87.6% mortality after 120 h., followed by S. carpocapsae and S. feltiae with 79.22 and 75.3% mortality rates, respectively. The mortality percentages exhibited by all nematodes’ species at both temperatures were lowest at the concentration of (250 IJs/ml). At 15 °C, H. bacteriophora (Kg11) caused (55.2%) mortality rate at the highest concentration (1000 IJs / ml) after 120 h. Conclusion The study suggested that these nematodes were efficient and could be recommended to control T. castaneum in its biological control programs.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 231
Author(s):  
Pumo Cai ◽  
Yunzhe Song ◽  
Da Huo ◽  
Jia Lin ◽  
Huameng Zhang ◽  
...  

Fopius arisanus is a solitary endoparasitoid that parasitizes a variety of tephritid species. Native to the Indo-Australian region, it is currently exploited worldwide as a biological control agent due to its exceptional efficiency in reducing pest populations. The efficiency of any biological control program is affected by the host location ability of the parasitoids. The present study used a Y-tube olfactometer to test the behavioural responses of female F. arisanus to four fruit species which had undergone different types of damages: undamaged, damaged through Bactrocera dorsalis ovipositioning (i.e., infested), or different levels of mechanical damage. Our results suggest that F. arisanus females were significantly attracted to mangoes and pears (vs. purified air), regardless of their condition; however, whilst infested mangoes did not attract more female parasitoids compared to healthy or mechanically damaged fruits, infested pears attracted significantly more. For citrus fruits and peaches, oviposition damage caused them to be more attractive to parasitoid females. In terms of the longevity of the effects, infested mango fruits remained attractive for up to 5 days after infestation, whereas for infested peaches, pears, and citrus fruits, the attractiveness tended to decrease as time passed. Regarding mechanical damage, mango fruits that had undergone any intensity of damage were equally attractive to parasitoid females; however, peach and citrus fruits with high levels of mechanical damage were more attractive, and pears were found to be most attractive with slight mechanical damage. Additional to the above, we also tested the effect of insecticides on behavioural responses using mangoes. We found that the treatment of infested fruits with lambda-cyhalothrin and cypermethrin remained attractive to F. arisanus females, albeit to different extents, which is in contrast to spinosad, cyantraniliprole, and acetamiprid. Finally, we suggest that the host-searching behaviour of F. arisanus females is mainly mediated by oviposition-induced volatiles, either emitted from the fruit or left by the fruit fly.


2015 ◽  
Vol 17 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Florence M. Anato ◽  
Rosine B. Wargui ◽  
Antonio A. C. Sinzogan ◽  
Joachim Offenberg ◽  
Appolinaire Adandonon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document