Genetic variation of two species with different life-history traits in the endangered renosterveld of South Africa - a comparative analysis ofEriocephalus africanusandHemimeris racemosa

2015 ◽  
Vol 53 (4) ◽  
pp. 447-453 ◽  
Author(s):  
Steffen Heelemann ◽  
Veronika Bäuerlein ◽  
Cornelia B. Krug ◽  
Karen J. Esler ◽  
Peter Poschlod ◽  
...  
2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.


2019 ◽  
Vol 110 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Ned A Dochtermann ◽  
Tori Schwab ◽  
Monica Anderson Berdal ◽  
Jeremy Dalos ◽  
Raphaël Royauté

AbstractThe contribution of genetic variation to phenotypes is a central factor in whether and how populations respond to selection. The most common approach to estimating these influences is via the calculation of heritabilities, which summarize the contribution of genetic variation to phenotypic variation. Heritabilities also indicate the relative effect of genetic variation on phenotypes versus that of environmental sources of variation. For labile traits like behavioral responses, life history traits, and physiological responses, estimation of heritabilities is important as these traits are strongly influenced by the environment. Thus, knowing whether or not genetic variation is present within populations is necessary to understand whether or not these populations can evolve in response to selection. Here we report the results of a meta-analysis summarizing what we currently know about the heritability of behavior. Using phylogenetically controlled methods we assessed the average heritability of behavior (0.235)—which is similar to that reported in previous analyses of physiological and life history traits—and examined differences among taxa, behavioral classifications, and other biologically relevant factors. We found that there was considerable variation among behaviors as to how heritable they were, with migratory behaviors being the most heritable. Interestingly, we found no effect of phylogeny on estimates of heritability. These results suggest, first, that behavior may not be particularly unique in the degree to which it is influenced by factors other than genetics and, second, that those factors influencing whether a behavioral trait will have low or high heritability require further consideration.


2011 ◽  
Vol 62 (6) ◽  
pp. 548 ◽  
Author(s):  
S. Tanaka ◽  
T. Kitamura ◽  
T. Mochizuki ◽  
K. Kofuji

The white shark, a top predator inhabiting the world’s oceans, is an endangered species. However, knowledge of its life-history traits and population structure is still limited. We hypothesised that life-history traits would vary among populations because the species’ various habitats are diverse and change through time. Age was estimated by counting growth bands in the centra of white sharks caught in Japan. The von Bertalanffy growth parameters were estimated at L∞ = 455 cm TL, k = 0.196 year–1 and t0 = –1.92 years for males and L∞ = 607 cm TL, k = 0.159 year–1 and t0 = –1.80 years for females. The growth rate to maturity was higher than that known for individuals from California and South Africa. Male sharks matured at 310 cm TL at 4 years of age and females began to mature at ~450 cm TL and 7 years. The D-loop-region sequences of mitochondrial DNA extracted from Japanese white sharks and GenBank datasets from sharks of California, Australia, New Zealand and South Africa indicate that Japanese white sharks form a monophyletic clade separate from the populations of other regions. The results suggest that unique life-history traits of Japanese white sharks may be caused by genetic differences.


2019 ◽  
Author(s):  
WU Blanckenhorn ◽  
V Llaurens ◽  
C Reim ◽  
Y Teuschl ◽  
E Postma

SUMMARYThe evolutionary potential of organisms depends on the presence of sufficient genetic variation for traits subject to selection, as well as on the genetic covariances among them. While genetic variation ultimately derives from mutation, theory predicts the depletion of genetic (co)variation under consistent directional or stabilizing selection in natural populations. We estimated and compared additive genetic (co)variances for several standard life history traits, including some for which this has never been assessed, before and after 24 generations of artificial selection on male size in the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae) using a series of standard half-sib breeding experiments. As predicted, genetic variances (VA), heritabilities (h2) and evolvabilities (IA) of body size, development time, first clutch size, and female age at first clutch were lower after selection. As independent selection lines were crossed prior to testing, we can rule out that this reduction is due to genetic drift. In contrast to the variances, and against expectation, the additive genetic correlations between the sexes for development time and body size remained strong and positive (rA = 0.8–0.9), while the genetic correlation between these traits within the sexes tended to strengthen (but not significantly so). Our study documents that the effect of selection on genetic variance is predictable, whereas that on genetic correlations is not.


2019 ◽  
Vol 76 (4) ◽  
pp. 987-998 ◽  
Author(s):  
Yu-Jia Lin ◽  
Edwin M Grandcourt ◽  
Lotfi Rabaoui ◽  
Rommel H Maneja ◽  
Mohammad A Qurban ◽  
...  

Abstract The orange-spotted grouper Epinephelus coioides is one of the most important commercially exploited fish species in the Arabian Gulf. Studies to establish the basic biological knowledge necessary for sustainable exploitation are few and of limited spatial extent. We carry out a comparative analysis of life history traits of this sequential hermaphrodite and of trends of abundance in coral reefs, northern vs. southern Gulf. We found remarkable differences in sex proportion by length and age, rates of somatic growth, size at maturity and production of gonadic biomass, and no differences in the age composition, mode of growth, timing and duration of spawning, natural mortality rate, and trends of abundance. In the northern Gulf, the reproductive tactics could be diandric protogyny or protandric because males disappear at higher size and later age. In the southern Gulf, the strategy is protogyny, with full predominance of females in early life and full predominance of males in late life. In the northern Gulf, the orange-spotted grouper could exhibit bidirectional sex change. We suggest that fisheries policies should be versatile, consisting of regional-wide as well as local management measures, to account for local differences and regional-wide commonalities in life history traits and trends of abundance.


Sign in / Sign up

Export Citation Format

Share Document