Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency

2014 ◽  
Vol 20 (2) ◽  
pp. 272-280 ◽  
Author(s):  
M. Tomás ◽  
H. Medrano ◽  
E. Brugnoli ◽  
J.M. Escalona ◽  
S. Martorell ◽  
...  
HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 730-736 ◽  
Author(s):  
Youssef Rouphael ◽  
Mariateresa Cardarelli ◽  
Giuseppe Colla ◽  
Elvira Rea

Limited water supply in the Mediterranean region is a major problem in irrigated agriculture. Grafting may enhance drought resistance, plant water use efficiency, and plant growth. An experiment was conducted in two consecutive growing seasons to determine yield, plant growth, fruit quality, leaf gas exchange, water relations, macroelements content in fruits and leaves, and water use efficiency of mini-watermelon plants [Citrullus lanatus (Thunb.) Matsum. and Nakai cv. Ingrid], either ungrafted or grafted onto the commercial rootstock ‘PS 1313’ (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne), under open field conditions. Irrigation treatments were 1.0, 0.75, and 0.5 evapotranspiration rates. In both years (2006 and 2007), marketable yield decreased linearly in response to an increase in water stress. When averaged over year and irrigation rate, the total and marketable yields were higher by 115% and 61% in grafted than in ungrafted plants, respectively. The fruit quality parameters of grafted mini-watermelons such as fruit dry matter and total soluble solids content were similar in comparison with those of ungrafted plants, whereas titratable acidity, K, and Mg concentrations improved significantly. In both grafting combinations, yield water use efficiency (WUEy) increased under water stress conditions with higher WUE values recorded in grafted than ungrafted plants. The concentration of N, K, and Mg in leaves was higher by 7.4%, 25.6%, and 38.8%, respectively, in grafted than in ungrafted plants. The net assimilation of CO2, stomatal conductance, relative water content, leaf, and osmotic potential decreased under water stress conditions. The sensitivity to water stress was similar between grafted and ungrafted plants, and the higher marketable yield from grafted plants was mainly the result of an improvement in nutritional status and higher CO2 assimilation and water uptake from the soil.


2020 ◽  
Vol 51 (3) ◽  
pp. 953-966
Author(s):  
Salim & et al.

A factorial experiment was conducted within split-split plot design with three replicates. Four genotypes seeds (Regalona, Q-37, KVL-SR2, and Q21) were planted in the sub plots while six water treatments distributed in the main plots. They were ordinary river irrigation (S0), stress at emergence (S1), branching (S2), at ear formation (S3), at flowering (S4), and at maturity (S5). Irrigation water was applied in the normal irrigation when 50-60% of the available water was depleted and one irrigation was omitted from the water stress treatments. Reference and actual evapotranspiration, pan evaporation, yield, crop coefficient, and water use efficiency were calculated. Mean irrigation requirement for the four genotypes based on irrigation scheduling was 230.8 mm, decreased by 14 and 17% under stress conditions of the drought tolerant stages. Grain yield ranged between 3.1 and 5 Mg ha-1 for water stress treatments compared to 5.6 and 4.2 mg. ha-1 for normal irrigation treatments. Genotype Q21 gave the highest yield and differed significantly from others. Field water use efficiency ranged between 1.6 to 1.1 kg m-3 and crop water use efficiency 1.38 to 2.22 kg m-3. KVL-SR2 and Q21 showed the highest efficiency (1.87 kg m-3). Results indicated that the stage of ear formation and flowering are the most tolerant to water stress. On the other hand, the branching, and maturity were critical stages with high reduction in yield under stress conditions.  


1997 ◽  
Vol 54 (2-3) ◽  
pp. 221-234 ◽  
Author(s):  
P. Steduto ◽  
N. Katerji ◽  
H. Puertos-Molina ◽  
M. U¨nlu¨ ◽  
M. Mastrorilli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document