Danshen-Enhanced Cardioprotective Effect of Cardioplegia on Ischemia Reperfusion Injury in a Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Model

2016 ◽  
Vol 41 (5) ◽  
pp. 452-460 ◽  
Author(s):  
Wei Wei ◽  
Yiwei Liu ◽  
Qiang Zhang ◽  
Yangming Wang ◽  
Xiaoling Zhang ◽  
...  
2018 ◽  
Vol 2 (2) ◽  
pp. 026102 ◽  
Author(s):  
Alejandro Hidalgo ◽  
Nick Glass ◽  
Dmitry Ovchinnikov ◽  
Seung-Kwon Yang ◽  
Xinli Zhang ◽  
...  

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
P Haxhikadrija ◽  
M Bekhite ◽  
T Kretzschmar ◽  
J Wu ◽  
A Maloku ◽  
...  

Abstract Introduction and aim Ceramides are proven to be biologically active in apoptosis, inflammation, mitochondrial dysfunction, and as a second messenger in various signaling pathways1. However, the data linking the role of ceramides in ischemia/reperfusion injury (I/R injury) are lacking. We aimed to establish an I/R injury model using human-induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) and to evaluate ceramide levels, ceramide synthesis pathway, and outcome of CM with inhibition of ceramide synthesis during I/R injury. Methods HiPSC technology has been used to generate functional human CMs to elucidate the underlying mechanisms of the pathophysiology of the human heart. Results In our model, we observed an increase of mRNA levels of genes regulating ceramide synthesis after 6 h of ischemia followed by 16 h reperfusion, such as SPTLC1 (1.1±0.08 vs 1.0, p=0.2), CerS2 (1.6±0.3 vs 1.0, p<0.001), CerS4 (1.3±0.1 vs 1.0, p=0.02), CerS5 (1.3±0.1 vs 1.0, p=0.03), and SMPD (1.6±0.1 vs 1.0, p=0.008) compared to control. Also, both long- and very long-chain ceramide species levels measured with mass spectrometry were increased significantly after 6 h ischemia followed by 16 h reperfusion compared to control (C14:0: 1,1±0.3 pmol/million cells vs 0,3±0,2 pmol/ million cells, p=0.02 and C24:1: 26,3±7,1 pmol/ million cells vs 9,6±3,4 pmol/ million cells, p=0.02). Inhibition of ceramide synthesis with Fumonisin B1 (FB1) significantly increased the viability after 6h of ischemia followed by 16 h of reperfusion compared to CMs incubated without inhibitors (32.2%±1.5% vs 26.9%±2.6%, p=0.04). Interestingly, we identified two mechanisms with which the viability improves after incubation with ceramide inhibitor. The first mechanism observed could be the restoration of both intracellular calcium baseline (control 29±1.2, I/R 55±5.7 and I/R with FB1 35.6±2.5, p<0,001) and peak (control 45.1±5.6, I/R 94.3±5.7 and I/R with FB1 56.5±7.5, p<0,001) levels to nearly the same levels as observed in control samples. A possible cause of increased calcium oscillations after 6 h of ischemia followed by 3 h of reperfusion in the first place could be an upregulation of the RyR2 levels detected by qPCR (2.5±0.4 vs control 1.0, p=0.008). The second mechanism of improving viability in I/R injury could be a decrease of generation of reactive oxygen species (ROS) detected by MitoSOX dye after incubation with FB1 inhibitor to nearly the same levels as observed in control (control 22±5.1, I/R 33.8±5.8 and I/R with FB1 30.7±5.9, p=0,06). Conclusion We conclude that ceramides have important implications in either mediating or causing injury and their inhibition improves the outcome of I/R injury by decreasing ROS generation and improving calcium oscillations. FUNDunding Acknowledgement Type of funding sources: Public hospital(s). Main funding source(s): Jena University Hospital, Clinic for Internal Medicine 1Interdisciplinary Center for Clinical Research Jena


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Connor G OBrien ◽  
Evgeniya Vaskova ◽  
Yuko Tada ◽  
Jihye Jung ◽  
Gentaro Ikeda ◽  
...  

Introduction: Coronary artery disease is a leading cause of death worldwide. Ischemic injury leads to myocardial dysfunction, resulting in heart failure. Exosomes have emerged as a promising therapeutic for restoring the failing heart. Fundamental questions such as cell of origin and molecular cargo for optimal therapeutic effect are areas of intense research. Our lab has shown that the exosomes from bone marrow derived mesenchymal stem cells (MSC-Ex) and induced pluripotent stem cell derived cardiomyocytes (iCM-Ex) both restore injured murine myocardium. These results led us to compare the therapeutic effects of MSC-Ex vs. iCM-Ex in a porcine myocardial ischemia reperfusion (IR) injury model, a step toward predicting efficacy in humans. Hypothesis: iCM-Ex is superior to MSC-Ex in restoring the injured porcine myocardium. Methods and Results: Pigs underwent ischemia reperfusion (IR) injury, consisting of 1 hour percutaneous balloon occlusion of the proximal left anterior descending artery immediately distal to the first septal artery. Following IR injury, 5 x 10 11 exosomes were delivered in ten, 500μL intramyocardial injections using a BioCardio Helix™ catheter. Biplane ventriculography was used to target the peri-infarct region. At 2- and 4-weeks post-infarct, pigs underwent cardiac MRI (cMRI) with ciné, delayed-enhanced (DEMRI) and manganese-enhanced (MEMRI) MRI. Pigs treated with iCM-Ex (n = 5) demonstrated a 41% improvement in left ventricular ejection fraction (LVEF, p = 0.004) and 35% reduction in indexed left ventricular end diastolic volume (p = 0.008) compared to controls while MSC-Ex (N = 5) did not demonstrate significant functional improvement. Furthermore, DEMRI and MEMRI showed a 21% reduction in myocardial scar (p = 0.14) in iCM-Ex treated animals compared to control while MSC-Ex group showed no difference. RNA-seq of the exosomes and transcriptomic analysis of the ex vivo myocardium will delineate the molecular mechanism of action and the putative intracellular pathway. Conclusion: iCM-Ex is superior to MSC-Ex in improving LVEF and reducing myocardial scar formation following ischemic insult. Comparative analysis between iCM-Ex and MSC-Ex is underway to identify the molecular targets that restore the failing heart.


2017 ◽  
Vol 43 (2) ◽  
pp. 611-625 ◽  
Author(s):  
Yingdong Du ◽  
Dawei Li ◽  
Conghui Han ◽  
Haoyu Wu ◽  
Longmei Xu ◽  
...  

Background/Aims: This study aimed to evaluate the effects of exosomes produced by human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs-Exo) on hepatic ischemia-reperfusion (I/R) injury, as well as the underlying mechanisms. Methods: Exosomes derived from hiPSC-MSCs were isolated and characterized both biochemically and biophysically. hiPSC-MSCs-Exo were injected systemically into a murine ischemia/reperfusion injury model via the inferior vena cava, and then the therapeutic effects were evaluated. The serum levels of transaminases (aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as histological changes were examined. Primary hepatocytes and human hepatocyte cell line HL7702 were used to test whether exosomes could induce hepatocytes proliferation in vitro. In addition, the expression levels of proliferation markers (proliferation cell nuclear antigen, PCNA; Phosphohistone-H3, PHH3) were measured by immunohistochemistry and Western blot. Moreover, SK inhibitor (SKI-II) and S1P1 receptor antagonist (VPC23019) were used to investigate the role of sphingosine kinase and sphingosine-1-phosphate-dependent pathway in the effects of hiPSC-MSCs-Exo on hepatocytes. Results: hiPSCs were efficiently induced into hiPSC-MSCs that had typical MSC characteristics. hiPSC-MSCs-Exo had diameters ranging from 100 to 200 nm and expressed exosome markers (Alix, CD63 and CD81). After hiPSC-MSCs-Exo administration, hepatocyte necrosis and sinusoidal congestion were markedly suppressed in the ischemia/reperfusion injury model, with lower histopathological scores. The levels of hepatocyte injury markers AST and ALT were significantly lower in the treatment group compared to control, and the expression levels of proliferation markers (PCNA and PHH3) were greatly induced after hiPSC-MSCs-Exo administration. Moreover, hiPSC-MSCs-Exo also induced primary hepatocytes and HL7702 cells proliferation in vitro in a dose-dependent manner. We found that hiPSC-MSCs-Exo could directly fuse with target hepatocytes or HL7702 cells and increase the activity of sphingosine kinase and synthesis of sphingosine-1-phosphate (S1P). Furthermore, the inhibition of SK1 or S1P1 receptor completely abolished the protective and proliferative effects of hiPSC-MSCs-Exo on hepatocytes, both in vitro and in vivo. Conclusions: Our results demonstrated that hiPSC-MSCs-Exo could alleviate hepatic I/R injury via activating sphingosine kinase and sphingosine-1-phosphate pathway in hepatocytes and promote cell proliferation. These findings represent a novel mechanism that potentially contributes to liver regeneration and have important implications for new therapeutic approaches to acute liver disease.


Sign in / Sign up

Export Citation Format

Share Document