scholarly journals The approximate number system and domain-general abilities as predictors of math ability in children with normal hearing and hearing loss

2017 ◽  
Vol 36 (2) ◽  
pp. 236-254 ◽  
Author(s):  
Rebecca Bull ◽  
Marc Marschark ◽  
Emily Nordmann ◽  
Patricia Sapere ◽  
Wendy A. Skene
2020 ◽  
Vol 6 (1) ◽  
pp. 50-65
Author(s):  
Carolyn Baer ◽  
Darko Odic

Why do some children excel in mathematics while others struggle? A large body of work has shown positive correlations between children’s Approximate Number System (ANS) and school-taught symbolic mathematical skills, but the mechanism explaining this link remains unknown. One potential mediator of this relationship might be children’s numerical metacognition: children’s ability to evaluate how sure or unsure they are in understanding and manipulating numbers. While previous work has shown that children’s math abilities are uniquely predicted by symbolic numerical metacognition, we focus on the extent to which children’s non-symbolic/ANS numerical metacognition, in particular sensitivity to certainty, might be predictive of math ability, and might mediate the relationship between the ANS and symbolic math. A total of 72 children aged 4–6 years completed measures of ANS precision, ANS metacognition sensitivity, and the Test of Early Mathematical Ability (TEMA-3). Our results replicate many established findings in the literature, including the correlation between ANS precision and the TEMA-3, particularly on the Informal subtype questions. However, we did not find that ANS metacognition sensitivity was related to TEMA-3 performance, nor that it mediated the relationship between the ANS and the TEMA-3. These findings suggest either that metacognitive calibration may play a larger role than metacognitive sensitivity, or that metacognitive differences in the non-symbolic number perception do not robustly contribute to symbolic math performance.


Author(s):  
Marcus Lindskog ◽  
Leo Poom ◽  
Anders Winman

AbstractPervasive congruency effects characterize approximate number discrimination tasks. Performance is better on congruent (the more numerous stimulus consists of objects of larger size that occupy a larger area) than on incongruent (where the opposite holds) items. The congruency effects typically occur when controlling for nonnumeric variables such as cumulative area. Furthermore, only performance on incongruent stimuli seems to predict math abilities. Here, we present evidence for an attentional-bias induced by stimulus control (ABC) where preattentive features such as item size reflexively influence decisions, which can explain these congruency effects. In three experiments, we tested predictions derived from the ABC. In Experiment 1, as predicted, we found that manipulation of size introduced congruency effects and eliminated the correlation with math ability for congruent items. However, performance on incongruent items and neutral, nonmanipulated items were still predictive of math ability. A negative correlation between performance on congruent and incongruent items even indicated that they measure different underlying constructs. Experiment 2 demonstrated, in line with the ABC account, that increasing presentation time reduced congruency effects. By directly measuring overt attention using eye-tracking, Experiment 3 revealed that people direct their first gaze toward the array with items of larger individual size, biasing them towards these arrays. The ABC explains why the relation between performance on approximate number discrimination tasks and math achievement has been fragile and suggests that stimulus control manipulations have contaminated the results. We discuss the importance of using stimuli that are representative of the environment.


2020 ◽  
pp. 127-139
Author(s):  
Ellen Peters

This chapter, “The Approximate Number System (ANS) and Discriminating Magnitudes,” discusses our intuitive, rather than deliberative, understanding of numbers. Humans are born with an innate sense of number and an ability to perform simple arithmetic operations with sets of objects without counting. We share this intuitive sense of numeric magnitude (how big one quantity is relative to another) with other species. Non-human animals cannot count as humans do. However, they have a keen sense of quantity that allows them to tell quickly and efficiently which quantity is bigger so that they can make better choices about food, mates, and safety. In humans, this intuitive sense of numbers develops from infancy to adulthood, and it appears to underlie the emergence of symbolic math ability (objective numeracy) in children.


2011 ◽  
Vol 14 (6) ◽  
pp. 1292-1300 ◽  
Author(s):  
Melissa E. Libertus ◽  
Lisa Feigenson ◽  
Justin Halberda

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258886
Author(s):  
Antonya Marie Gonzalez ◽  
Darko Odic ◽  
Toni Schmader ◽  
Katharina Block ◽  
Andrew Scott Baron

Despite the global importance of science, engineering, and math-related fields, women are consistently underrepresented in these areas. One source of this disparity is likely the prevalence of gender stereotypes that constrain girls’ and women’s math performance and interest. The current research explores the developmental roots of these effects by examining the impact of stereotypes on young girls’ intuitive number sense, a universal skill that predicts later math ability. Across four studies, 762 children ages 3–6 were presented with a task measuring their Approximate Number System accuracy. Instructions given before the task varied by condition. In the two control conditions, the task was described to children either as a game or a test of eyesight ability. In the experimental condition, the task was described as a test of math ability and that researchers were interested in whether boys or girls were better at math and counting. Separately, we measured children’s explicit beliefs about math and gender. Results conducted on the combined dataset indicated that while only a small number of girls in the sample had stereotypes associating math with boys, these girls performed significantly worse on a test of Approximate Number System accuracy when it was framed as a math test rather than a game or an eyesight test. These results provide novel evidence that for young girls who do endorse stereotypes about math and gender, contextual activation of these stereotypes may impair their intuitive number sense, potentially affecting their acquisition of formal mathematics concepts and developing interest in math-related fields.


Author(s):  
Margreet Vogelzang ◽  
Christiane M. Thiel ◽  
Stephanie Rosemann ◽  
Jochem W. Rieger ◽  
Esther Ruigendijk

Purpose Adults with mild-to-moderate age-related hearing loss typically exhibit issues with speech understanding, but their processing of syntactically complex sentences is not well understood. We test the hypothesis that listeners with hearing loss' difficulties with comprehension and processing of syntactically complex sentences are due to the processing of degraded input interfering with the successful processing of complex sentences. Method We performed a neuroimaging study with a sentence comprehension task, varying sentence complexity (through subject–object order and verb–arguments order) and cognitive demands (presence or absence of a secondary task) within subjects. Groups of older subjects with hearing loss ( n = 20) and age-matched normal-hearing controls ( n = 20) were tested. Results The comprehension data show effects of syntactic complexity and hearing ability, with normal-hearing controls outperforming listeners with hearing loss, seemingly more so on syntactically complex sentences. The secondary task did not influence off-line comprehension. The imaging data show effects of group, sentence complexity, and task, with listeners with hearing loss showing decreased activation in typical speech processing areas, such as the inferior frontal gyrus and superior temporal gyrus. No interactions between group, sentence complexity, and task were found in the neuroimaging data. Conclusions The results suggest that listeners with hearing loss process speech differently from their normal-hearing peers, possibly due to the increased demands of processing degraded auditory input. Increased cognitive demands by means of a secondary visual shape processing task influence neural sentence processing, but no evidence was found that it does so in a different way for listeners with hearing loss and normal-hearing listeners.


Sign in / Sign up

Export Citation Format

Share Document