When Hearing Does Not Mean Understanding: On the Neural Processing of Syntactically Complex Sentences by Listeners With Hearing Loss

Author(s):  
Margreet Vogelzang ◽  
Christiane M. Thiel ◽  
Stephanie Rosemann ◽  
Jochem W. Rieger ◽  
Esther Ruigendijk

Purpose Adults with mild-to-moderate age-related hearing loss typically exhibit issues with speech understanding, but their processing of syntactically complex sentences is not well understood. We test the hypothesis that listeners with hearing loss' difficulties with comprehension and processing of syntactically complex sentences are due to the processing of degraded input interfering with the successful processing of complex sentences. Method We performed a neuroimaging study with a sentence comprehension task, varying sentence complexity (through subject–object order and verb–arguments order) and cognitive demands (presence or absence of a secondary task) within subjects. Groups of older subjects with hearing loss ( n = 20) and age-matched normal-hearing controls ( n = 20) were tested. Results The comprehension data show effects of syntactic complexity and hearing ability, with normal-hearing controls outperforming listeners with hearing loss, seemingly more so on syntactically complex sentences. The secondary task did not influence off-line comprehension. The imaging data show effects of group, sentence complexity, and task, with listeners with hearing loss showing decreased activation in typical speech processing areas, such as the inferior frontal gyrus and superior temporal gyrus. No interactions between group, sentence complexity, and task were found in the neuroimaging data. Conclusions The results suggest that listeners with hearing loss process speech differently from their normal-hearing peers, possibly due to the increased demands of processing degraded auditory input. Increased cognitive demands by means of a secondary visual shape processing task influence neural sentence processing, but no evidence was found that it does so in a different way for listeners with hearing loss and normal-hearing listeners.

2017 ◽  
Author(s):  
Corianne Rogalsky ◽  
Arianna N. LaCroix ◽  
Kuan-Hua Chen ◽  
Steven W. Anderson ◽  
Hanna Damasio ◽  
...  

AbstractBroca’s area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of “agrammatic comprehension” in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared to canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca’s area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion-symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. The present study investigates these seemingly conflicting findings in 66 left hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence-picture matching and plausibility judgments. Patients with damage including Broca’s area (but excluding the temporal lobe; n=11) on average did not exhibit the expected agrammatic comprehension pattern, e.g. their performance was > 80% on noncanonical sentences in the sentence-picture matching task. Patients with ATL damage (n=18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion symptom mapping (VLSM), we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal-inferior parietal network including portions of the ATL, but not Broca’s area. Notably however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca’s area, suggesting that the contribution of Broca’s area to sentence comprehension may be related to task-related cognitive demands.


2018 ◽  
Vol 30 (2) ◽  
pp. 234-255 ◽  
Author(s):  
Corianne Rogalsky ◽  
Arianna N. LaCroix ◽  
Kuan-Hua Chen ◽  
Steven W. Anderson ◽  
Hanna Damasio ◽  
...  

Broca's area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of “agrammatic comprehension” in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared with canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca's area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion–symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. This study investigates these seemingly conflicting findings in 66 left-hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence–picture matching and plausibility judgments. Patients with damage including Broca's area (but excluding the temporal lobe; n = 11) on average did not exhibit the expected agrammatic comprehension pattern—for example, their performance was >80% on noncanonical sentences in the sentence–picture matching task. Patients with ATL damage ( n = 18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion–symptom mapping, we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal–inferior parietal network including portions of the ATL, but not Broca's area. Notably, however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca's area, suggesting that the contribution of Broca's area to sentence comprehension may be related to task-related cognitive demands.


2014 ◽  
Vol 4 (2) ◽  
pp. 257-282 ◽  
Author(s):  
Edith Kaan

There is ample evidence that native speakers anticipate upcoming information at various levels during sentence comprehension. In contrast, some studies on late second-language (L2) learners support the view that L2 learners do not anticipate information during processing, or at least, not to the same extent as native speakers do. In the current paper, I propose that native and L2 speakers are underlyingly the same as far as sentence processing mechanisms are concerned, and that potential differences in anticipatory behavior can be accounted for by the same factors that drive individual differences in native speakers; in particular, differences in frequency biases, competing information, the accuracy and consistency of the lexical representation, and task-induced effects. Suggestions for future research are provided.


2021 ◽  
pp. 1-8
Author(s):  
Mustafa Avcu ◽  
Mehmet Metin ◽  
Raşit Kılıç ◽  
Muhammed Alpaslan

Background: In this study, optic coherence tomography (OCT) examination was performed to check whether there was any interaction between ophthalmic axonal structures in unilateral tinnitus patients, and the relationship between optic nerve thickness and cochlear nerve thickness was evaluated. Objective: The aim of the study was to evaluate the relatioship between hearing loss, tinnitus, and nerve thicknesses. Study Design: Prospective study. Setting: Tertiary referral university hospital. Patients: The study included 88 patients with unilateral tinnitus, for which no organic cause could be found in physical examination, psychiatric evaluation, or with imaging methods. Study groups were formed of the tinnitus side and control groups were formed of the healthy side as follows: Group 1 (Non-tinnitus side normal hearing values – n = 30), Group 2 (non-tinnitus side minimal hearing loss – n = 27), Group 3 (non-tinnitus side moderate hearing loss – n = 31), Group 4 (tinnitus side normal hearing values – n = 25), Group 5 (tinnitus side minimal hearing loss – n = 25), and Group 6 (tinnitus side moderate hearing loss – n = 38). Intervention: Retinal nerve fiber layer (RNFL) thickness was evaluated with OCT, and the cochlear nerve cross-sectional area was evaluated with MRI. Main Outcome Measures: RNFL measurements were taken with OCT from the subfoveal area (RNFL-SF) and 1.5 mm temporal to the fovea (RNFL-T µm) and nasal (RNFL-N µm) sectors. On MRI, 3 measurements were taken along the nerve from the cerebellopontine angle as far as the internal auditory canal, and the mean value of these 3 measurements was calculated. Results: When the groups were evaluated in respect of cochlear nerve thickness, a significant difference was seen between Group 1 and both the groups with hearing loss and the tinnitus groups. In the subgroup analysis, a statistically significant difference was determined between Group 1 and Groups 3, 4, 5, and 6 (p = 0.013, p = 0.003, p < 0.001, and p < 0.001, respectively). When the groups were evaluated in respect of the RNFL-SF (µm), RNFL-T (µm), and RNFL-N (µm) values, the differences were determined to be statistically significant (p < 0.001 for all). In the correlation analysis, a negative correlation was determined between hearing loss and cochlear nerve diameter (r: −0.184, p = 0.014), and RNFL-N (r: −0.272, p < 0.001) and between tinnitus and cochlear nerve diameter (r: −0.536, p < 0.001), and RNFL-T (r: −0.222, p < 0.009). Conclusion: The study results clearly showed a relationship between cochlear nerve fiber thickness and hearing loss and the severity of tinnitus in cases with unilateral tinnitus and that there could be neurodegenerative factors in the disease etiology. A similar relationship seen with the RNFL supports the study hypothesis.


Author(s):  
Hiroki Fujita ◽  
Ian Cunnings

Abstract We report two offline and two eye-movement experiments examining non-native (L2) sentence processing during and after reanalysis of temporarily ambiguous sentences like “While Mary dressed the baby laughed happily”. Such sentences cause reanalysis at the main clause verb (“laughed”), as the temporarily ambiguous noun phrase (“the baby”) may initially be misanalysed as the direct object of the subordinate clause verb (“dressed”). The offline experiments revealed that L2ers have difficulty reanalysing temporarily ambiguous sentences with a greater persistence of the initially assigned misinterpretation than native (L1) speakers. In the eye-movement experiments, we found that L2ers complete reanalysis similarly to L1ers but fail to fully erase the memory trace of the initially assigned interpretation. Our results suggested that the source of L2 reanalysis difficulty is a failure to erase the initially assigned misinterpretation from memory rather than a failure to conduct syntactic reanalysis.


2021 ◽  
Vol 25 ◽  
pp. 233121652098630
Author(s):  
S. Hu ◽  
L. Anschuetz ◽  
D. A. Hall ◽  
M. Caversaccio ◽  
W. Wimmer

Residual inhibition, that is, the temporary suppression of tinnitus loudness after acoustic stimulation, is a frequently observed phenomenon that may have prognostic value for clinical applications. However, it is unclear in which subjects residual inhibition is more likely and how stable the effect of inhibition is over multiple repetitions. The primary aim of this work was to evaluate the effect of hearing loss and tinnitus chronicity on residual inhibition susceptibility. The secondary aim was to investigate the short-term repeatability of residual inhibition. Residual inhibition was assessed in 74 tinnitus subjects with 60-second narrow-band noise stimuli in 10 consecutive trials. The subjects were assigned to groups according to their depth of suppression (substantial residual inhibition vs. comparator group). In addition, a categorization in normal hearing and hearing loss groups, related to the degree of hearing loss at the frequency corresponding to the tinnitus pitch, was made. Logistic regression was used to identify factors associated with susceptibility to residual inhibition. Repeatability of residual inhibition was assessed using mixed-effects ordinal regression including poststimulus time and repetitions as factors. Tinnitus chronicity was not associated with residual inhibition for subjects with hearing loss, while a statistically significant negative association between tinnitus chronicity and residual inhibition susceptibility was observed in normal hearing subjects (odds ratio: 0.63; p = .0076). Moreover, repeated states of suppression can be stably induced, reinforcing the use of residual inhibition for within-subject comparison studies.


1999 ◽  
Vol 8 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Melisa R. Ellis ◽  
Michael K. Wynne

The loudness growth in 1/2-octave bands (LGOB) procedure has been shown previously to provide valid estimates of loudness growth for adults with normal hearing and those with hearing loss (Allen, Hall, & Jeng, 1990), and it has been widely incorporated into fitting strategies for adult hearing aid users by a hearing aid manufacturer. Here, we applied a simple modification of LGOB to children and adults with normal hearing and then compared the loudness growth functions (as obtained from end-point data) between the two age groups. In addition, reliability data obtained within a single session and between test sessions were compared between the two groups. Large differences were observed in the means between the two groups for the lower boundary values, the upper boundary values, and the range between boundaries both within and across all frequencies. The data obtained from children also had greater variance than the adult data. In addition, there was more variability in the data across test sessions for children. Many test-retest differences for children exceeded 10 dB. Adult test-retest differences were generally less than 10 dB. Although the LGOB with the modifications used in this study may be used to measure loudness growth in children, its poor reliability with this age group may limit its clinical use for children with hearing loss. Additional work is needed to explore whether loudness growth measures can be adapted successfully to children and whether these measures contribute worthwhile information for fitting hearing aids to children.


Sign in / Sign up

Export Citation Format

Share Document