item size
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jacob M Paul ◽  
Martijn van Ackooij ◽  
Tuomas C ten Cate ◽  
Benjamin M Harvey

Many animals use visual numerosity, the number of items in a group, to guide behavior. Neurons in human association cortices show numerosity-tuned responses, decreasing amplitude with distance from a specific numerosity. How are such responses derived from early visual responses? Recent studies show aggregate response amplitudes in human early visual cortex monotonically increase with numerosity, regardless of object size and spacing. This is surprising because numerosity is typically considered a high-level visual or cognitive feature. Here we first use computational modelling of 7T fMRI data to show these monotonic responses originate at the stimulus's retinotopic location in primary visual cortex (V1). Given this location, we then ask whether these monotonic responses can be better described by V1's established response properties. We characterize the Fourier decomposition (into contrast at specific orientations and spatial frequencies) of laboratory numerosity stimuli. This demonstrates that aggregate Fourier power (at all orientations and spatial frequencies) nonlinearly follows numerosity with little effect of item size, spacing or shape: it is proportional to numerosity at a fixed contrast. This nonlinear relationship lets us distinguish predictions of responses to Fourier power and numerosity. Monotonic responses are better predicted by Fourier power, later tuned responses are better predicted by numerosity. Tuned responses emerge after lateral occipital cortex and are independent of retinotopic location. We propose that numerosity's straightforward perception and neural responses reflect its straightforward estimation from early visual spatial frequency domain image representations. Our numerical vision may have built on behaviorally beneficial analysis of spatial frequency in simpler animals.


Author(s):  
Marcus Lindskog ◽  
Leo Poom ◽  
Anders Winman

AbstractPervasive congruency effects characterize approximate number discrimination tasks. Performance is better on congruent (the more numerous stimulus consists of objects of larger size that occupy a larger area) than on incongruent (where the opposite holds) items. The congruency effects typically occur when controlling for nonnumeric variables such as cumulative area. Furthermore, only performance on incongruent stimuli seems to predict math abilities. Here, we present evidence for an attentional-bias induced by stimulus control (ABC) where preattentive features such as item size reflexively influence decisions, which can explain these congruency effects. In three experiments, we tested predictions derived from the ABC. In Experiment 1, as predicted, we found that manipulation of size introduced congruency effects and eliminated the correlation with math ability for congruent items. However, performance on incongruent items and neutral, nonmanipulated items were still predictive of math ability. A negative correlation between performance on congruent and incongruent items even indicated that they measure different underlying constructs. Experiment 2 demonstrated, in line with the ABC account, that increasing presentation time reduced congruency effects. By directly measuring overt attention using eye-tracking, Experiment 3 revealed that people direct their first gaze toward the array with items of larger individual size, biasing them towards these arrays. The ABC explains why the relation between performance on approximate number discrimination tasks and math achievement has been fragile and suggests that stimulus control manipulations have contaminated the results. We discuss the importance of using stimuli that are representative of the environment.


4OR ◽  
2020 ◽  
Author(s):  
John Martinovic

AbstractIn this paper, we consider the (additive integrality) gap of the cutting stock problem (CSP) and the skiving stock problem (SSP). Formally, the gap is defined as the difference between the optimal values of the ILP and its LP relaxation. For both, the CSP and the SSP, this gap is known to be bounded by 2 if, for a given instance, the bin size is an integer multiple of any item size, hereinafter referred to as the divisible case. In recent years, some improvements of this upper bound have been proposed. More precisely, the constants 3/2 and 7/5 have been obtained for the SSP and the CSP, respectively, the latter of which has never been published in English language. In this article, we introduce two reduction strategies to significantly restrict the number of representative instances which have to be dealt with. Based on these observations, we derive the new and improved upper bound 4/3 for both problems under consideration.


2020 ◽  
Vol 32 (3) ◽  
pp. 547-564
Author(s):  
Zheng Zhang ◽  
Brian T. Denton ◽  
Xiaolan Xie

This article describes two versions of the chance-constrained stochastic bin-packing (CCSBP) problem that consider item-to-bin allocation decisions in the context of chance constraints on the total item size within the bins. The first version is a stochastic CCSBP (SP-CCSBP) problem, which assumes that the distributions of item sizes are known. We present a two-stage stochastic mixed-integer program (SMIP) for this problem and a Dantzig–Wolfe formulation suited to a branch-and-price (B&P) algorithm. We further enhance the formulation using coefficient strengthening and reformulations based on probabilistic packs and covers. The second version is a distributionally robust CCSBP (DR-CCSBP) problem, which assumes that the distributions of item sizes are ambiguous. Based on a closed-form expression for the DR chance constraints, we approximate the DR-CCSBP problem as a mixed-integer program that has significantly fewer integer variables than the SMIP of the SP-CCSBP problem, and our proposed B&P algorithm can directly solve its Dantzig–Wolfe formulation. We also show that the approach for the DR-CCSBP problem, in addition to providing robust solutions, can obtain near-optimal solutions to the SP-CCSBP problem. We implement a series of numerical experiments based on real data in the context of surgery scheduling, and the results demonstrate that our proposed B&P algorithm is computationally more efficient than a standard branch-and-cut algorithm, and it significantly improves upon the performance of a well-known bin-packing heuristic.


2020 ◽  
Vol 6 (1) ◽  
pp. 129-147 ◽  
Author(s):  
Mathieu Guillaume ◽  
Christine Schiltz ◽  
Amandine Van Rinsveld

Basic numerical abilities are generally assumed to influence more complex cognitive processes involving numbers, such as mathematics. Yet measuring non-symbolic number abilities remains challenging due to the intrinsic correlation between numerical and non-numerical dimensions of any visual scene. Several methods have been developed to generate non-symbolic stimuli controlling for the latter aspects but they tend to be difficult to replicate or implement. In this study, we describe the NASCO method, which is an extension to the method popularized by Dehaene, Izard, and Piazza (2005). Their procedure originally controlled for two visual dimensions that are mediated by Number: Total Area and Item Size (i.e., N = TA/IS). Here, we additionally propose to control for another twofold dimension related to the array extent, which is also mediated by Number: Convex Hull Area and Mean Occupancy (i.e., N = CH/MO). We illustrate the NASCO method with a MATLAB app—NASCO app—that allows easy generation of dot arrays for a visually controlled assessment of non-symbolic numerical abilities. Results from a numerical comparison task revealed that the introduction of this twofold dimension manipulation substantially affected young adults’ performance. In particular, we did not replicate the relation between non-symbolic number abilities and arithmetic skills. Our findings open the debate about the reliability of previous results that did not take into account visual features related to the array extent. We then discuss the strengths of NASCO method to assess numerical ability, as well as the benefits of its straightforward implementation in NASCO app for researchers.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Luis M. Gómez-Laplaza ◽  
Laura Romero ◽  
Robert Gerlai

Abstract Comparative studies on quantity discrimination in animals are important for understanding potential evolutionary roots of numerical competence. A previous study with angelfish has shown that they discriminate numerically different sets of same-sized food items and prefer the larger set. However, variables that covary with number were not controlled and choice could have been influenced by variables such as size or density of the food items rather than numerical attributes. Here using a recently developed approach, we examined whether contour length of the food items affects choice in a spontaneous binary choice task. In Experiment 1, a contrast of 1 vs. 1 food item was presented, but the ratio between the size (diameter) of the food items was varied. In Experiment 2, numerically different food sets were equated in overall size by increasing the size (diameter) of the items in the numerically small sets. In both Experiments, subjects showed a preference for the larger sized food items with a discrimination limit. These results show that item size plays a prominent role in foraging decisions in angelfish. Experiment 3 placed numerical and size attributes of the sets in conflict by presenting one larger-sized food item in the numerically smaller set that also had smaller overall size (diameter) of food items. Angelfish showed no preference in any of the contrasts, suggesting that they could not make optimal foraging decisions when these attributes were in conflict. Maximization of energy return is central to optimal foraging. Accordingly, here item size was also found to be a key feature of the sets, although the numerical attributes of the sets also influenced the choice.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Elisa Castaldi ◽  
Manuela Piazza ◽  
Stanislas Dehaene ◽  
Alexandre Vignaud ◽  
Evelyn Eger

Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this ‘number sense’, or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or an orthogonal dimension (average item size) of visual dot arrays. Along the dorsal visual stream, numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was selectively amplified and progressively enhanced across the hierarchy when task relevant. Our results reveal a sensory extraction mechanism yielding information on numerosity separable from other dimensions already at early visual stages and suggest that later regions along the dorsal stream are most important for explicit manipulation of numerical quantity.


2019 ◽  
Author(s):  
Elisa Castaldi ◽  
Manuela Piazza ◽  
Stanislas Dehaene ◽  
Alexandre Vignaud ◽  
Evelyn Eger

Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this 'number sense', or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or to an orthogonal dimension (average item size) of visual dot arrays. Numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was progressively enhanced along the dorsal visual pathway and was selectively amplified by attention when task relevant. These results reveal a dedicated extraction mechanism for numerosity that operates independently of other quantitative dimensions of the stimuli, and suggest that later stages along the dorsal stream are most important for the explicit manipulation of numerical quantity.


Author(s):  
Agustinus Borgy Waluyo

A very large number of broadcast items affect the access time of mobile clients to retrieve data item of interest. This is due to high waiting time for mobile clients to find the desired data item over wireless channel. In this chapter, the authors propose a method to optimize query access time and hence minimize power consumption. The proposed method is divided into two stages: (1) The authors present analytical models and utilize the analytical models for both query access time over broadcast channel and on-demand channel; (2) they present a global index, an indexing scheme designed to assist data dissemination over multi broadcast channel. Several factors are taken into account, which include request arrival rate, service rate, number of request, size of data item, size of request, number of data item to retrieve, and bandwidth. Simulation models are developed to find out the performance of the analytical model. Finally, the authors compare the performance of the proposed method against the conventional approach.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209256 ◽  
Author(s):  
Elisa Castaldi ◽  
Anne Mirassou ◽  
Stanislas Dehaene ◽  
Manuela Piazza ◽  
Evelyn Eger

Sign in / Sign up

Export Citation Format

Share Document