Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales

2019 ◽  
Vol 94 (3) ◽  
pp. 1179-1194 ◽  
Author(s):  
Paula J. Rudall ◽  
Richard M. Bateman
2000 ◽  
Vol 6 ◽  
pp. 171-182 ◽  
Author(s):  
Ben A. LePage ◽  
Hermann W. Pfefferkorn

When one hears the term “ground cover,” one immediately thinks of “grasses.” This perception is so deep-seated that paleobotanists even have been overheard to proclaim that “there was no ground cover before grasses.” Today grasses are so predominant in many environments that this perception is perpetuated easily. On the other hand, it is difficult to imagine the absence or lack of ground cover prior to the mid-Tertiary. We tested the hypothesis that different forms of ground cover existed in the past against examples from the Recent and the fossil record (Table 1). The Recent data were obtained from a large number of sources including those in the ecological, horticultural, and microbiological literature. Other data were derived from our knowledge of Precambrian life, sedimentology and paleosols, and the plant fossil record, especially in situ floras and fossil “monocultures.” Some of the data are original observations, but many others are from the literature. A detailed account of these results will be presented elsewhere (Pfefferkorn and LePage, in preparation).


2021 ◽  
Vol 562 ◽  
pp. 110056
Author(s):  
Jon D. Richey ◽  
Isabel P. Montañez ◽  
Joseph D. White ◽  
William A. DiMichele ◽  
William J. Matthaeus ◽  
...  

Terra Nova ◽  
2013 ◽  
Vol 26 (3) ◽  
pp. 195-200 ◽  
Author(s):  
Borja Cascales-Miñana ◽  
Christopher J. Cleal

2020 ◽  
Vol 6 (35) ◽  
pp. eaaz4724 ◽  
Author(s):  
C. Martínez ◽  
C. Jaramillo ◽  
A. Correa-Metrío ◽  
W. Crepet ◽  
J. E. Moreno ◽  
...  

Andean uplift played a fundamental role in shaping South American climate and species distribution, but the relationship between the rise of the Andes, plant composition, and local climatic evolution is poorly known. We investigated the fossil record (pollen, leaves, and wood) from the Neogene of the Central Andean Plateau and documented the earliest evidence of a puna-like ecosystem in the Pliocene and a montane ecosystem without modern analogs in the Miocene. In contrast to regional climate model simulations, our climate inferences based on fossil data suggest wetter than modern precipitation conditions during the Pliocene, when the area was near modern elevations, and even wetter conditions during the Miocene, when the cordillera was around ~1700 meters above sea level. Our empirical data highlight the importance of the plant fossil record in studying past, present, and future climates and underscore the dynamic nature of high elevation ecosystems.


1999 ◽  
Vol 9 ◽  
pp. 171-186
Author(s):  
Peter R. Crane

At a time when the popular perception of paleontology is dominated by images of dinosaurs and other spectacular vertebrates, or the mysteries surrounding the Cambrian “explosion” of animal life, it is perhaps not surprising that the rich and informative fossil record of plants has scarcely made an impact on the public consciousness. In reality, as one would expect from those organisms that comprise the bulk of the biological material in terrestrial ecosystems, the fossil record of plants is extensive (Stewart and Rothwell, 1993). Leaves, wood fragments, pollen grains, spores, fruits, seeds and other plant parts are the most common fossils in rocks deposited in ancient flood plains, lakes and many other environments - and they are often exquisitely preserved. This excellent fossil record provides important information about the ecology of ancient terrestrial ecosystems. The quality of the plant fossil record also makes paleobotanical data highly informative about the historical pattern of plant evolution. It is this pattern, and its congruence with patterns in the characters of living and fossil plants — as summarized in a classification — that is the focus of this chapter.


2021 ◽  
Author(s):  
Sandra R Schachat ◽  
Jonathan L Payne ◽  
C Kevin Boyce ◽  
Conrad C Labandeira

A typical fossil flora examined for insect herbivory contains a few hundred leaves and a dozen or two insect damage types. Paleontologists employ a wide variety of metrics to assess differences in herbivory among assemblages: damage type diversity, intensity (the proportion of leaves, or of leaf surface area, with insect damage), the evenness of diversity, and comparisons of the evenness and diversity of the flora to the evenness and diversity of damage types. Although the number of metrics calculated is quite large, given the amount of data that is usually available, the study of insect herbivory in the fossil record still lacks a quantitative framework that can be used to distinguish among different causes of increased insect herbivory and to generate null hypotheses of the magnitude of changes in insect herbivory over time. Moreover, estimates of damage type diversity, the most common metric, are generated with inconsistent sampling standardization routines. Here we demonstrate that coverage-based rarefaction yields valid and reliable estimates of damage type diversity that are robust to differences among floral assemblages in the number of leaves examined, average leaf surface area, and the inclusion of plant organs other than leaves such as seeds and axes. We outline the potential of a theoretical ecospace that combines various metrics to distinguish between potential causes of increased herbivory. We close with a discussion of the most appropriate uses of a theoretical ecospace for insect herbivory, with the overlapping damage type diversities of Paleozoic gymnosperms and Cenozoic angiosperms as a brief case study.


2014 ◽  
Vol 12 (4) ◽  
pp. 4-10 ◽  
Author(s):  
Cindy V. Looy ◽  
Hans Kerp ◽  
Ivo A.P. Duijnstee ◽  
William A. DiMichele

1998 ◽  
Vol 11 (4) ◽  
pp. 391 ◽  
Author(s):  
Robert S. Hill

The morphological response of leaves to low nutrient levels and low phosphorus (scleromorphy) in particular, has become confused in the literature with the response to low water levels (xeromorphy). However, the two can be reconciled to some degree, particularly when it becomes clear that the earliest Proteaceae in the fossil record are scleromorphic, but occurred in very wet climates, where excessive water on the leaf surface was probably a major problem. Unequivocal xeromorphic characters are interpreted as those that increase the boundary layer and thus reduce water loss per unit of leaf surface area without improving water repellancy from the surface. The clearest characters in this regard are the presence of stomata in pits, stomata individually enclosed by raised structures or revolute leaf margins. None of these characters appears prior to the Late Eocene in south-western Australia and the Oligocene in south-eastern Australia, suggesting that xeromorphy arose relatively late, at least in the areas wherefossil deposits occur. A dense covering of trichomes, often interpreted as a xeromorphic response, is here considered to have had the primary function of keeping water off the leaf surface, although it may have been exapted to a xeromorphic function when dry conditions arose. Thus scleromorphy and xeromorphy appear to have arisen at distinctly different times in Australian Proteaceae, with the latter not being a convincingly pre–Late Eocene phenomenon.


Sign in / Sign up

Export Citation Format

Share Document