scholarly journals Cell volume regulation in cancer cell migration driven by osmotic water flow

2019 ◽  
Vol 110 (8) ◽  
pp. 2337-2347 ◽  
Author(s):  
Kazuhiro Morishita ◽  
Kengo Watanabe ◽  
Hidenori Ichijo

1987 ◽  
Vol 253 (6) ◽  
pp. F1091-F1104
Author(s):  
A. B. Maunsbach ◽  
S. Tripathi ◽  
E. L. Boulpaep

Steady-state effects of osmotic gradients on extracellular spaces and cell volumes were studied by ultrastructural morphometry in isolated perfused Ambystoma proximal tubules. Solute clamping, high-resolution pressure and flow control of lumen and bath solutions were all ascertained before and during fixation. Isosmotic removal of organic substrates in the lumen reversibly abolished transport, as confirmed by transepithelial potential decrease from -4.7 +/- 0.5 to -0.5 +/- 0.2 mV (n = 8) but had no effect on ultrastructural parameters. The walls of the extracellular spaces are therefore not deformed by spontaneous solute-coupled water transport. A hyperosmolar lumen generated a streaming potential of -1.56 +/- 0.15 mV (n = 8), reduced cell volume to 65%, reduced lateral intercellular space (LIS) volume to 20%, and LIS volume density to 29% of control without significant effects on the volume of the basal extracellular labyrinth (BEL). A hyperosmolar bath generated a streaming potential of +1.96 +/- 0.30 mV (n = 7), reduced cell volume to 68%, and increased LIS volume density to 236% of control. BEL volume was 55% larger during lumen-to-bath flow than during bath-to-lumen flow. Because cell volume reduction is very similar for both directions of osmotic water flow, the oppositely directed volume changes in the extracellular spaces are secondary to transepithelial water flow. The greater change in volume of LIS compared with BEL indicates that the outermost parts of the LIS are more resistive to transepithelial water flow than the slitlike communications of the BEL with the peritubular space.



2020 ◽  
Vol 528 (3) ◽  
pp. 459-465
Author(s):  
Meng Wang ◽  
Yaowei Yang ◽  
Lichun Han ◽  
Shuang Han ◽  
Na Liu ◽  
...  


2021 ◽  
Author(s):  
Hanxiao Shi ◽  
Atsuko Niimi ◽  
Toshiyuki Takeuchi ◽  
Kazuya Shiogama ◽  
Yasuyoshi Mizutani ◽  
...  


2021 ◽  
Author(s):  
Matthew R. Zanotelli ◽  
Jian Zhang ◽  
Cynthia A. Reinhart-King




Sign in / Sign up

Export Citation Format

Share Document