scholarly journals EAO‐193/PO‐CI‐001 | A deep learning improves classification of dental implant systems by dental professionals

2021 ◽  
Vol 32 (S22) ◽  
pp. 108-108
Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 815
Author(s):  
Shintaro Sukegawa ◽  
Kazumasa Yoshii ◽  
Takeshi Hara ◽  
Tamamo Matsuyama ◽  
Katsusuke Yamashita ◽  
...  

It is necessary to accurately identify dental implant brands and the stage of treatment to ensure efficient care. Thus, the purpose of this study was to use multi-task deep learning to investigate a classifier that categorizes implant brands and treatment stages from dental panoramic radiographic images. For objective labeling, 9767 dental implant images of 12 implant brands and treatment stages were obtained from the digital panoramic radiographs of patients who underwent procedures at Kagawa Prefectural Central Hospital, Japan, between 2005 and 2020. Five deep convolutional neural network (CNN) models (ResNet18, 34, 50, 101 and 152) were evaluated. The accuracy, precision, recall, specificity, F1 score, and area under the curve score were calculated for each CNN. We also compared the multi-task and single-task accuracies of brand classification and implant treatment stage classification. Our analysis revealed that the larger the number of parameters and the deeper the network, the better the performance for both classifications. Multi-tasking significantly improved brand classification on all performance indicators, except recall, and significantly improved all metrics in treatment phase classification. Using CNNs conferred high validity in the classification of dental implant brands and treatment stages. Furthermore, multi-task learning facilitated analysis accuracy.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 910
Author(s):  
Jae-Hong Lee ◽  
Young-Taek Kim ◽  
Jong-Bin Lee ◽  
Seong-Nyum Jeong

In this study, the efficacy of the automated deep convolutional neural network (DCNN) was evaluated for the classification of dental implant systems (DISs) and the accuracy of the performance was compared against that of dental professionals using dental radiographic images collected from three dental hospitals. A total of 11,980 panoramic and periapical radiographic images with six different types of DISs were divided into training (n = 9584) and testing (n = 2396) datasets. To compare the accuracy of the trained automated DCNN with dental professionals (including six board-certified periodontists, eight periodontology residents, and 11 residents not specialized in periodontology), 180 images were randomly selected from the test dataset. The accuracy of the automated DCNN based on the AUC, Youden index, sensitivity, and specificity, were 0.954, 0.808, 0.955, and 0.853, respectively. The automated DCNN outperformed most of the participating dental professionals, including board-certified periodontists, periodontal residents, and residents not specialized in periodontology. The automated DCNN was highly effective in classifying similar shapes of different types of DISs based on dental radiographic images. Further studies are necessary to determine the efficacy and feasibility of applying an automated DCNN in clinical practice.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document