Deep Learning through Convolutional Neural Networks for Classification of Image A Novel Approach Using Hyper Filter

2019 ◽  
Vol 7 (6) ◽  
pp. 164-168
Author(s):  
Kshitij Tripathi ◽  
Rajendra G. Vyas ◽  
Anil K. Gupta
2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Gabriele Valvano ◽  
Gianmarco Santini ◽  
Nicola Martini ◽  
Andrea Ripoli ◽  
Chiara Iacconi ◽  
...  

Cluster of microcalcifications can be an early sign of breast cancer. In this paper, we propose a novel approach based on convolutional neural networks for the detection and segmentation of microcalcification clusters. In this work, we used 283 mammograms to train and validate our model, obtaining an accuracy of 99.99% on microcalcification detection and a false positive rate of 0.005%. Our results show how deep learning could be an effective tool to effectively support radiologists during mammograms examination.


Author(s):  
Robinson Jiménez-Moreno ◽  
Javier Orlando Pinzón-Arenas ◽  
César Giovany Pachón-Suescún

This article presents a work oriented to assistive robotics, where a scenario is established for a robot to reach a tool in the hand of a user, when they have verbally requested it by his name. For this, three convolutional neural networks are trained, one for recognition of a group of tools, which obtained an accuracy of 98% identifying the tools established for the application, that are scalpel, screwdriver and scissors; one for speech recognition, trained with the names of the tools in Spanish language, where its validation accuracy reach a 97.5% in the recognition of the words; and another for recognition of the user's hand, taking in consideration the classification of 2 gestures: Open and Closed hand, where a 96.25% accuracy was achieved. With those networks, tests in real time are performed, presenting results in the delivery of each tool with a 100% of accuracy, i.e. the robot was able to identify correctly what the user requested, recognize correctly each tool and deliver the one need when the user opened their hand, taking an average time of 45 seconds in the execution of the application.


2020 ◽  
Author(s):  
Alizar Marchawala ◽  
Preetkumar Patel ◽  
Khushal Paresh Thaker ◽  
Hardik Gunjal ◽  
Abhishek nagrecha ◽  
...  

<p>This paper implements the automated classification of patient discharge notes into standard disease labels which includes the name of the diagnostic procedure required. In this approach, we use Convolutional Neural Networks to classify and represent complex features from the medical discharge summaries using the MT sample dataset. We make use of GloVE to have a pretrained model learn from it.<b></b></p>


Author(s):  
D. Laupheimer ◽  
P. Tutzauer ◽  
N. Haala ◽  
M. Spicker

Within this paper we propose an end-to-end approach for classifying terrestrial images of building facades into five different utility classes (<i>commercial, hybrid, residential, specialUse, underConstruction</i>) by using Convolutional Neural Networks (CNNs). For our examples we use images provided by Google Street View. These images are automatically linked to a coarse city model, including the outlines of the buildings as well as their respective use classes. By these means an extensive dataset is available for training and evaluation of our Deep Learning pipeline. The paper describes the implemented end-to-end approach for classifying street-level images of building facades and discusses our experiments with various CNNs. In addition to the classification results, so-called Class Activation Maps (CAMs) are evaluated. These maps give further insights into decisive facade parts that are learned as features during the training process. Furthermore, they can be used for the generation of abstract presentations which facilitate the comprehension of semantic image content. The abstract representations are a result of the stippling method, an importance-based image rendering.


Sign in / Sign up

Export Citation Format

Share Document