The Presentation and Classification of Anxiety in Autism Spectrum Disorder

2012 ◽  
Vol 19 (4) ◽  
pp. 323-347 ◽  
Author(s):  
Connor M. Kerns ◽  
Philip C. Kendall
Author(s):  
Noore Zahra ◽  
Hussah N. Al-Eisa ◽  
Kahkashan Tabassum ◽  
Sahar A. EI-Rahman ◽  
Mona Jamjoom

2022 ◽  
pp. 1-21
Author(s):  
Gurkan Tuna ◽  
Ayşe Tuna

Autism spectrum disorder (ASD) is a challenging developmental condition that involves restricted and/or repetitive behaviors and persistent challenges in social interaction and speech and nonverbal communication. There is not a standard medical test used to diagnose ASD; therefore, diagnosis is made by looking at the child's developmental history and behavior. In recent years, due to the increase in diagnosed cases of ASD, researchers proposed software-based tools to aid in and expedite the diagnosis. Considering the fact that most of these tools rely on the use of classifiers, in study, random forest, decision tree, k-nearest neighbors, and zero rule algorithms are used as classifiers, and their performances are compared using well-known performance metrics. As proven in the study, random forest algorithm can provide higher accuracy than the others in the classification of ASD and can be integrated into a computer- or humanoid-robot-based system for automated prescreening and diagnosis of ASD in preschool children groups.


2020 ◽  
Vol 10 (10) ◽  
pp. 754
Author(s):  
Naseer Ahmed Khan ◽  
Samer Abdulateef Waheeb ◽  
Atif Riaz ◽  
Xuequn Shang

Autism disorder, generally known as Autism Spectrum Disorder (ASD) is a brain disorder characterized by lack of communication skills, social aloofness and repetitions in the actions in the patients, which is affecting millions of the people across the globe. Accurate identification of autistic patients is considered a challenging task in the domain of brain disorder science. To address this problem, we have proposed a three-stage feature selection approach for the classification of ASD on the preprocessed Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI Dataset. In the first stage, a large neural network which we call a “Teacher ” was trained on the correlation-based connectivity matrix to learn the latent representation of the input. In the second stage an autoencoder which we call a “Student” autoencoder was given the task to learn those trained “Teacher” embeddings using the connectivity matrix input. Lastly, an SFFS-based algorithm was employed to select the subset of most discriminating features between the autistic and healthy controls. On the combined site data across 17 sites, we achieved the maximum 10-fold accuracy of 82% and for the individual site-wise data, based on 5-fold accuracy, our results outperformed other state of the art methods in 13 out of the total 17 site-wise comparisons.


Sign in / Sign up

Export Citation Format

Share Document