Cutaneous localization of angioimmunoblastic T‐cell lymphoma may masquerade as B‐cell lymphoma or classical Hodgkin lymphoma: A histologic diagnostic pitfall

Author(s):  
Vanessa Szablewski ◽  
Olivier Dereure ◽  
Céline René ◽  
Ariane Tempier ◽  
Luc Durand ◽  
...  

2015 ◽  
Vol 8 (4) ◽  
pp. 235-241 ◽  
Author(s):  
Yi Zhou ◽  
Marc K. Rosenblum ◽  
Ahmet Dogan ◽  
Achim A. Jungbluth ◽  
April Chiu


2020 ◽  
Author(s):  
Qingqing Pan ◽  
Yaping Luo ◽  
Yan Zhang ◽  
Long Chang ◽  
Ji Li ◽  
...  

Abstract Background: In order to study the CXCR4 expression with 68Ga-Pentixafor PET in different types of non-Hodgkin lymphoma, we performed a retrospective study to describe the 68Ga-Pentixafor PET/CT imaging in a spectrum of lymphomas and to compare it with 18F-FDG PET/CT. Results: Twenty-seven patients with newly diagnosed non-Hodgkin lymphoma were recruited retrospectively. 68Ga-Pentixafor PET showed increased radioactivity in lymphoplasmacytic lymphoma (n = 8), marginal zone lymphoma (n = 4), diffuse large B cell lymphoma (n = 3), follicular lymphoma (n = 2), mantle cell lymphoma (n = 1), unclassified indolent B cell lymphoma (n = 3) and enteropathy associated T cell lymphoma (n = 3). However, peripheral T cell lymphoma, not otherwise specified (n = 1), and NK/T cell lymphoma (n = 2) were not avid for 68Ga-Pentixafor. In comparison to 18F-FDG PET, 68Ga-Pentixafor PET demonstrated more extensive disease and higher radioactivity in lymphoplasmacytic lymphoma and marginal zone lymphoma. Conclusion: CXCR4 expression varies in different types of non-Hodgkin lymphoma. Overexpression of CXCR4 was detected with 68Ga-Pentixafor PET/CT in lymphoplasmacytic lymphoma, marginal zone lymphoma, diffuse large B cell lymphoma, follicular lymphoma, mantle cell lymphoma, unclassified indolent B cell lymphoma, and enteropathy associated T cell lymphoma.



Author(s):  
Cem Şimşek ◽  
Başak Bostankolu ◽  
Ece Özoğul ◽  
Arzu Sağlam Ayhan ◽  
Ayşegül Üner ◽  
...  


2017 ◽  
Vol 35 (9) ◽  
pp. 955-962 ◽  
Author(s):  
Andrea B. Moffitt ◽  
Sandeep S. Dave

In this review, we examine the genomic landscapes of lymphomas that arise from B, T, and natural killer cells. Lymphomas represent a striking spectrum of clinical behaviors. Although some lymphomas are curable with standard therapy, the majority of the affected patients succumb to their disease. Here, the genetic underpinnings of these heterogeneous entities are reviewed. We consider B-cell lymphomas, including Burkitt lymphoma, diffuse large B-cell lymphoma, Hodgkin lymphoma, and primary mediastinal B-cell lymphoma. We also examine T-cell lymphomas, including anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, cutaneous T-cell lymphoma, adult T-cell leukemia/lymphoma, and other peripheral T-cell lymphomas. Together, these malignancies make up most lymphomas diagnosed around the world. Genomic technologies, including microarrays and next-generation sequencing, have enabled a better understanding of the molecular underpinnings of these cancers. We describe the broad genomics findings that characterize these lymphoma types and discuss new therapeutic opportunities that arise from these findings.



2019 ◽  
Vol 36 (1) ◽  
pp. 57-59
Author(s):  
Cem Şimşek ◽  
Başak Bostankolu ◽  
Ece Özoğul ◽  
Arzu Sağlam Ayhan ◽  
Ayşegül Üner ◽  
...  


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 19-19
Author(s):  
Katsuyoshi Takata ◽  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katy Milne ◽  
Tomoko Miyata-Takata ◽  
...  

Background: LAG3 is one of the immune check point receptors that are expressed on activated cytotoxic T-cells and regulatory T cells. Physiologically, T-cell proliferation and memory T-cell differentiation is negatively regulated by LAG3-MHC interaction. In cancer tissues, T-cells that are chronically exposed to tumor antigens might upregulate LAG3 and receive inhibitory stimuli to enter an exhaustion state limiting anti-tumor immune responses. Currently, clinical trials using double blockade of LAG3/PD1 are active in several solid tumours, but there are only a small number of clinical trials using LAG3 monoclonal antibodies in lymphoma. Recently, we published a characteristic LAG3+ T-cell population as a mediator of immune suppression in classical Hodgkin lymphoma (Aoki & Chong et al. Cancer Discovery 2020). However, the abundance and variability of LAG3 positive T-cell populations across a spectrum of B-cell lymphoma has not been well studied and it remains an open question if LAG3 expression is associated with treatment outcome under standard-of-care conditions. Methods: We performed a LAG3 immunohistochemical (IHC) screen in a large cohort of B-cell Non-Hodgkin lymphoma (diffuse large B-cell lymphoma (DLBCL); N=341, follicular lymphoma (FL); N=198 (grade 1-3A), transformed FL to aggressive lymphoma (tFL); N=120, mantle cell lymphoma (MCL); N=179, primary mediastinal large B-cell lymphoma (PMBCL); N=61) and classical Hodgkin lymphoma (HL; N=459) to assess LAG3 expression in the tumor microenvironment (TME). Moreover, we characterized LAG3+ T-cell populations using multi-color immmunohistochemistry (IHC) (LAG3, PD1, CD4, CD8, FOXP3, CD20) in various lymphoma subtypes. Clinical parameters including treatment outcome were correlated with the abundance of LAG3+ T-cell populations in the TME. Results: On average, HL (7%) and PMBCL (6%) showed higher LAG3+ cellular frequency than the other B-cell lymphoma subtypes studied (DLBCL and FL: 2%, MCL: 0.8%). Comparing the frequency of LAG3+ cells according to MHC class I/II status, DLBCL showed a significant correlation with MHC class I status, and LAG3 expression correlated with MHC class II status in HL. Next, we performed multi-color IHC to describe subtype-specific expression patterns of LAG3 in T cell subsets. LAG3+PD1- T-cells were predominantly found in HL and PMBCL with only rare LAG3+PD1+ cells in HL. The majority of LAG3+ T-cells co-expressed CD4 in HL, in contrast to CD8 in PMBCL. DLBCL showed a mixed population pattern with a 1:1 ratio of LAG3+PD1- and LAG3+PD1+ T-cells. In FL, the majority of LAG3+ T-cells were CD4+PD1+, suggesting a more exhausted TME phenotype in FL than in other lymphoma subtypes. Cellular distance analysis showed that LAG3+CD4+ T-cells were in close vicinity to CD20+ lymphoma cells in FL, while in DLBCL and PMBCL, the nearest neighbors of malignant cells were LAG3+CD8+. Triple-positive LAG3+PD1+CD8+ T-cells significantly correlated with high infiltrating M2 macrophage (Pearson's correlation test, P < 0.001) content and the ABC cell-of-origin subtype (Pearson's correlation test, P = 0.002) in DLBCL. The abundance of LAG3+CD8+PD1- cells correlated with a high FLIPI score (Pearson's correlation test, P = 0.033), disease specific survival (HR = 2.8, 95% CI = 1.3-5.9, P = 0.006), time to progression (HR = 2.8, 95% CI = 1.6-5.0, P = 0.001) and transformation (HR = 4.0, 95%CI = 1.7-9.6, P = 0.002) in FL treated with R-CVP (N = 135). Assessing LAG3 expression by single color IHC in FL (cut-off at 5%), patients with LAG3-positive samples showed significantly higher FL transformation rates (P = 0.023) and tFL samples showed higher abundance of LAG3+ cells than the corresponding primary pretreatment FL samples (primary FL: 1.5±1.7% vs. tFL: 4.2±3.8%, t-test, P = 0.01). The increased transformation risk was validated in an independent FL cohort treated with R-CHOP/CVP (N=97, HR = 6.2, 95% CI = 2.8-13.9, P < 0.001). Conclusion: The highest abundance of LAG3+ T-cells in the TME was found in HL and its related entity PMBCL. The differential outcome correlations and co-expression patterns in LAG3+ T cells across B-cell lymphoma subtypes indicate heterogeneity in TME composition and related pathogenic mechanisms. Our results suggest that LAG3 expression patterns will be important in the interpretation of ongoing studies and highlight populations that may benefit from LAG3 checkpoint inhibition. Disclosures Sehn: AstraZeneca: Consultancy, Honoraria; Genentech, Inc.: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Chugai: Consultancy, Honoraria; TG therapeutics: Consultancy, Honoraria; Verastem Oncology: Consultancy, Honoraria; Teva: Consultancy, Honoraria, Research Funding; Servier: Consultancy, Honoraria; F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Research Funding; MorphoSys: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Apobiologix: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Kite: Consultancy, Honoraria; Merck: Consultancy, Honoraria; Lundbeck: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Acerta: Consultancy, Honoraria. Savage:Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy; BeiGene: Other: Steering Committee; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria. Scott:Celgene: Consultancy; Abbvie: Consultancy; AstraZeneca: Consultancy; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; Janssen: Consultancy, Research Funding. Steidl:Bayer: Consultancy; Juno Therapeutics: Consultancy; Roche: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding; AbbVie: Consultancy; Curis Inc: Consultancy.



2006 ◽  
Vol 130 (11) ◽  
pp. 1707-1711
Author(s):  
Robert C. Hawley ◽  
Milena Cankovic ◽  
Richard J. Zarbo

Abstract Patients with angioimmunoblastic T-cell lymphoma can have profound immune dysfunction and immunodeficiency. Epstein-Barr virus–driven B-cell lymphoid proliferation can occur in angioimmunoblastic T-cell lymphoma, as in other immunodeficiency states. However, few cases of Epstein-Barr virus–positive B-cell lymphoma arising in patients with preexisting angioimmunoblastic T-cell lymphoma have been reported. We report a case of angioimmunoblastic T-cell lymphoma in which diffuse large B-cell lymphoma developed 56 months after the diagnosis of angioimmunoblastic T-cell lymphoma. The patient survived for 9 years after the initial diagnosis of angioimmunoblastic T-cell lymphoma, and molecular studies performed on multiple biopsy specimens during this period revealed the dynamic nature of clonal lymphoid expansion. Epstein-Barr virus latent membrane protein 1 and Epstein-Barr virus– encoded RNA were detected in the diffuse large B-cell lymphoma, suggesting that Epstein-Barr virus may have played a role in the pathogenesis of the diffuse large B-cell lymphoma.





Sign in / Sign up

Export Citation Format

Share Document