Developmental bias for number words in the intraparietal sulcus

2016 ◽  
Vol 20 (3) ◽  
pp. e12385 ◽  
Author(s):  
Courtney A. Lussier ◽  
Jessica F. Cantlon
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Katarzyna Rączy ◽  
Maria Czarnecka ◽  
Małgorzata Paplińska ◽  
Guido Hesselmann ◽  
André Knops ◽  
...  

Abstract Numbers can be presented in different notations and sensory modalities. It is currently debated to what extent these formats overlap onto a single representation. We asked whether such an overlap exists between symbolic numbers represented in two sensory modalities: Arabic digits and Braille numbers. A unique group of sighted Braille readers underwent extensive Braille reading training and was tested in an fMRI repetition-suppression paradigm with tactile Braille digit primes and visual Arabic digit targets. Our results reveal cross-modal priming: compared to repetition of two different quantities (e.g., Braille “5” and Arabic “2”), repetition of the same quantity presented in two modalities (e.g., Braille “5” and Arabic “5”) led to a reduction of activation in several sub-regions of the Intraparietal Sulcus (IPS), a key cortical region for magnitude processing. Thus, in sighted Braille readers, the representations of numbers read by sight and by touch overlap to a degree sufficient to cause repetition suppression. This effect was modulated by the numerical prime-probe distance. Altogether this indicates that the left parietal cortex hosts neural assemblies that are sensitive to numerical information from different notations (number words or Arabic digits) and modalities (tactile and visual).


Author(s):  
Iring Koch ◽  
Vera Lawo

In cued auditory task switching, one of two dichotically presented number words, spoken by a female and a male, had to be judged according to its numerical magnitude. One experimental group selected targets by speaker gender and another group by ear of presentation. In mixed-task blocks, the target-defining feature (male/female vs. left/right) was cued prior to each trial, but in pure blocks it remained constant. Compared to selection by gender, selection by ear led to better performance in pure blocks than in mixed blocks, resulting in larger “global” mixing costs for ear-based selection. Selection by ear also led to larger “local” switch costs in mixed blocks, but this finding was partially mediated by differential cue-repetition benefits. Together, the data suggest that requirements of attention shifting diminish the auditory spatial selection benefit.


Author(s):  
Lindsay C. Malloy ◽  
Sonja Pauline Brubacher ◽  
Michael E. Lamb ◽  
Polly Benton

2016 ◽  
Author(s):  
David Barner

Perceptual representations – e.g., of objects or approximate magnitudes –are often invoked as building blocks that children combine with linguisticsymbols when they acquire the positive integers. Systems of numericalperception are either assumed to contain the logical foundations ofarithmetic innately, or to supply the basis for their induction. Here Ipropose an alternative to this general framework, and argue that theintegers are not learned from perceptual systems, but instead arise toexplain perception as part of language acquisition. Drawing oncross-linguistic data and developmental data, I show that small numbers(1-4) and large numbers (~5+) arise both historically and in individualchildren via entirely distinct mechanisms, constituting independentlearning problems, neither of which begins with perceptual building blocks.Specifically, I propose that children begin by learning small numbers(i.e., *one, two, three*) using the same logical resources that supportother linguistic markers of number (e.g., singular, plural). Several yearslater, children discover the logic of counting by inferring the logicalrelations between larger number words from their roles in blind countingprocedures, and only incidentally associate number words with perception ofapproximate magnitudes, in an *ad hoc* and highly malleable fashion.Counting provides a form of explanation for perception but is not causallyderived from perceptual systems.


2018 ◽  
Author(s):  
David Barner

Why did humans develop precise systems for measuring experience, like numbers, clocks, andcalendars? I argue that precise representational systems were constructed by earlier generationsof humans because they recognized that their noisy perceptual systems were not capturingdistinctions that existed in the world. Abstract symbolic systems did not arise from perceptualrepresentations, but instead were constructed to describe and explain perceptual experience. Byanalogy, I argue that when children learn number words, they do not rely on noisy perceptualsystems, but instead acquire these words as units in a broader system of procedures, whosemeanings are ultimately defined by logical relations to one another, not perception.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yangwen Xu ◽  
Lorenzo Vignali ◽  
Olivier Collignon ◽  
Davide Crepaldi ◽  
Roberto Bottini

AbstractOur brain constructs reality through narrative and argumentative thought. Some hypotheses argue that these two modes of cognitive functioning are irreducible, reflecting distinct mental operations underlain by separate neural bases; Others ascribe both to a unitary neural system dedicated to long-timescale information. We addressed this question by employing inter-subject measures to investigate the stimulus-induced neural responses when participants were listening to narrative and argumentative texts during fMRI. We found that following both kinds of texts enhanced functional couplings within the frontoparietal control system. However, while a narrative specifically implicated the default mode system, an argument specifically induced synchronization between the intraparietal sulcus in the frontoparietal control system and multiple perisylvian areas in the language system. Our findings reconcile the two hypotheses by revealing commonalities and differences between the narrative and the argumentative brain networks, showing how diverse mental activities arise from the segregation and integration of the existing brain systems.


2019 ◽  
Vol 31 (5) ◽  
pp. 768-779 ◽  
Author(s):  
Justin Riddle ◽  
Kai Hwang ◽  
Dillan Cellier ◽  
Sofia Dhanani ◽  
Mark D'Esposito

Beta and gamma frequency neuronal oscillations have been implicated in top–down and bottom–up attention. In this study, we used rhythmic TMS to modulate ongoing beta and gamma frequency neuronal oscillations in frontal and parietal cortex while human participants performed a visual search task that manipulates bottom–up and top–down attention (single feature and conjunction search). Both task conditions will engage bottom–up attention processes, although the conjunction search condition will require more top–down attention. Gamma frequency TMS to superior precentral sulcus (sPCS) slowed saccadic RTs during both task conditions and induced a response bias to the contralateral visual field. In contrary, beta frequency TMS to sPCS and intraparietal sulcus decreased search accuracy only during the conjunction search condition that engaged more top–down attention. Furthermore, beta frequency TMS increased trial errors specifically when the target was in the ipsilateral visual field for the conjunction search condition. These results indicate that beta frequency TMS to sPCS and intraparietal sulcus disrupted top–down attention, whereas gamma frequency TMS to sPCS disrupted bottom–up, stimulus-driven attention processes. These findings provide causal evidence suggesting that beta and gamma oscillations have distinct functional roles for cognition.


2014 ◽  
Vol 17 (6) ◽  
pp. 905-919 ◽  
Author(s):  
Melissa E. Libertus ◽  
Lisa Feigenson ◽  
Justin Halberda ◽  
Barbara Landau

2013 ◽  
Vol 66 (2) ◽  
pp. 389-402 ◽  
Author(s):  
Jessica Sullivan ◽  
David Barner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document