Interspecific competition drives gall‐inducing insect species distribution on leaves of Matayba guianensis Aubl. (Sapindaceae)

2021 ◽  
Author(s):  
Jean Carlos Santos ◽  
Yurixhi Maldonado‐López ◽  
Henrique Venâncio ◽  
Wanessa Rejane Almeida ◽  
Daniel Tirapeli Felício ◽  
...  
2005 ◽  
Vol 58 ◽  
pp. 140-147 ◽  
Author(s):  
M.R. McNeill ◽  
C.J. Fletcher

Nodding thistle receptacle weevil Rhinocyllus conicus and gallfly Urophora solstitialis attack the capitula of nodding thistle Carduus nutans L Between 31 October and 15 December 2003 the phenology of both R conicus and U solstitialis was studied at a dryland site in Canterbury Adult R conicus were more numerous than U solstitialis on capitula throughout the experiment Larvae of R conicus were first found on 11 November (15 of capitula infested) and peaked on 2 December with 53 of capitula infested Only 3 of capitula were infested by U solstitialis Adult R conicus or U solstitialis emerged from 79 of the selected primary and secondary capitula The majority of infested capitula (81) contained only R conicus 2 contained only U solstitialis while 17 contained both insect species Parasitism of R conicus by the braconid parasitoid Microctonus aethiopoides was low and occurred when most weevil eggs had been laid


Sommerfeltia ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 1-53 ◽  
Author(s):  
Bente Støa ◽  
Rune Halvorsen ◽  
Sabrina Mazzoni ◽  
Vladimir I. Gusarov

Abstract This paper provides a theoretical understanding of sampling bias in presence-only data in the context of species distribution modelling. This understanding forms the basis for two integrated frameworks, one for detecting sampling bias of different kinds in presence-only data (the bias assessment framework) and one for assessing potential effects of sampling bias on species distribution models (the bias effects framework). We exemplify the use of these frameworks to museum data for nine insect species in Norway, for which the distribution along the two main bioclimatic gradients (related to oceanicity and temperatures) are modelled using the MaxEnt method. Models of different complexity (achieved by use of two different model selection procedures that represent spatial prediction or ecological response modelling purposes, respectively) were generated with different types of background data (uninformed and background-target-group [BTG]). The bias assessment framework made use of comparisons between observed and theoretical frequency-of-presence (FoP) curves, obtained separately for each combination of species and bioclimatic predictor, to identify potential sampling bias. The bias effects framework made use of comparisons between modelled response curves (predicted relative FoP curves) and the corresponding observed FoP curves for each combination of species and predictor. The extent to which the observed FoP curves deviated from the expected, smooth and unimodal theoretical FoP curve, varied considerably among the nine insect species. Among-curve differences were, in most cases, interpreted as indications of sampling bias. Using BTG-type background data in many cases introduced strong sampling bias. The predicted relative FoP curves from MaxEnt were, in general, similar to the corresponding observed FoP curves. This indicates that the main structure of the data-sets were adequately summarised by the MaxEnt models (with the options and settings used), in turn suggesting that shortcomings of input data such as sampling bias or omission of important predictors may overshadow the effect of modelling method on the predictive performance of distribution models. The examples indicate that the two proposed frameworks are useful for identification of sampling bias in presence-only data and for choosing settings for distribution modelling options such as the method for extraction of background data points and determining the appropriate level of model complexity.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
B Liu ◽  
F Li ◽  
Z Guo ◽  
L Hong ◽  
W Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document