alexandrium catenella
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 70)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 82 ◽  
Author(s):  
F. N. Khokhar ◽  
N. Ahmed ◽  
A. Ali ◽  
K. Gabol ◽  
A. R. Khooharo ◽  
...  

Abstract The present study reports on seasonal and spatial variations in diversity, distribution and abundance of dinoflegellates and indicates the presence of HAB species in Pakistan waters. A total of 179 taxa, recorded in this study from offshore and near-shore waters, belong to 41 genera in 26 families and 10 orders. The high species count (149 species) was recorded from Manora Island offshore station (MI-1) and 105 spp, 109 spp and 115 spp were encountered from the Mubarak village offshore station (MV-1), Manora near shore station (MI-2) and Mubarak Village near-shore station (MV-2) respectively. Tripos furca was the dominant and frequently occurring species (> 1 x103 to > 25 x103 cells L-1 from coastal and >1x 105 cells L-l from near-shore stations) in addition to less abundant Alexandrium catenella, Alexandrium sp., Alexandrium minutum, and Prorocentrum micans (>103 to 25x 103cells/L). Another 44 species occurred in relatively low numbers (<103 cell L-l). Seventy species were found throughout the study period at all four stations. High number of species in three genera (Tripos (38), Protoperidinium (34) and Prorocentrum (20) was recorded. Potently toxic (16 genera 43 species) and HAB related (19 genera and 30 species) dinoflagellate taxa were also recorded. The percent contribution of dinoflagellates in total phytoplankton population generally remained below 20% except for a few instances. Manora Island stations had comparatively higher Shannon index and equitability and slightly lower dominance index. The PCA plot showed strong positive correlation among chlorophyll-a concentration, dissolved oxygen, total number of phytoplankton and dinoflagellates.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 900
Author(s):  
Camilo Rodríguez-Villegas ◽  
Patricio A. Díaz ◽  
Pilar Riobó ◽  
Araceli E. Rossignoli ◽  
Francisco Rodríguez ◽  
...  

The bloom-forming toxic dinoflagellate Alexandrium catenella was first detected in southern Chile (39.5–55° S) 50 years ago and is responsible for most of the area’s cases of paralytic shellfish poisoning (PSP). Given the complex life history of A. catenella, which includes benthic sexual cysts, in this study, we examined the potential link between latitude, toxicity, and sexual compatibility. Nine clones isolated from Chilean Patagonia were used in self- and out-crosses in all possible combinations (n = 45). The effect of latitude on toxicity, reproductive success indexes, and cyst production was also determined. Using the toxin profiles for all strains, consisting of C1, C2, GTX4, GTX1, GTX3, and NeoSTX, a latitudinal gradient was determined for their proportions (%) and content per cell (pg cell−1), with the more toxic strains occurring in the north (−40.6° S). Reproductive success also showed a latitudinal tendency and was lower in the north. None of the self-crosses yielded resting cysts. Rather, the production of resting cysts was highest in pairings of clones separated by distances of 1000–1650 km. Our results contribute to a better understanding of PSP outbreaks in the region and demonstrate the importance of resting cysts in fueling new toxic events. They also provide additional evidence that the introduction of strains from neighboring regions is a cause for concern.


Harmful Algae ◽  
2021 ◽  
Vol 110 ◽  
pp. 102122
Author(s):  
Hyeon Ho Shin ◽  
Zhun Li ◽  
Hyun Jung Kim ◽  
Bum Soo Park ◽  
Jihoon Lee ◽  
...  

Harmful Algae ◽  
2021 ◽  
Vol 110 ◽  
pp. 102123
Author(s):  
Goh Nishitani ◽  
Keigo Yamamoto ◽  
Masaki Nakajima ◽  
Yoshiki Shibata ◽  
Waka Sato-Okoshi ◽  
...  

Author(s):  
Camilo Rodríguez-Villegas ◽  
Patricio Díaz ◽  
Pilar Riobó ◽  
Araceli E. Rossignoli ◽  
Francisco Rodríguez ◽  
...  

The bloom-forming toxic dinoflagellate Alexandrium catenella was first detected in Southern Chile (39.5&ndash;55&deg;S) 50 years ago and is responsible for most of the area&rsquo;s cases of paralytic shellfish poisoning (PSP). Given the complex life history of A. catenella, which includes benthic sexual cysts, in this study we examined the potential link between latitude, toxicity, and sexual compatibility. Nine clones isolated from Chilean Patagonia were used in self- and out-crosses in all possible combinations (n=45). The effect of latitude on toxicity, reproductive success indexes, and cyst production was also determined. Although the toxin profiles were similar for all strains, consisting of C1, C2, GTX4, GTX1, GTX3, and NeoSTX, a latitudinal gradient was determined for their proportions (%) and content per cell (pg cell&minus;1), with the more toxic strains occurring in the north (&minus;40.6&deg;S). Reproductive success also showed a latitudinal tendency and was lower in the north. None of the self-crosses yielded resting cysts. Rather, the production of resting cysts was highest in pairings of clones separated by distances of 1000&ndash;1650km. Our results contribute to a better understanding of PSP outbreaks in the region and demonstrate the importance of resting cysts in fueling new toxic events. They also provide additional evidence that the introduction of strains from neighboring regions is a cause for concern.


2021 ◽  
Vol 172 ◽  
pp. 112783
Author(s):  
Javier Paredes-Mella ◽  
Jorge I. Mardones ◽  
Luis Norambuena ◽  
Gonzalo Fuenzalida ◽  
Gissela Labra ◽  
...  

BioMetals ◽  
2021 ◽  
Author(s):  
Kyoko Yarimizu ◽  
Jorge I. Mardones ◽  
Javier Paredes-Mella ◽  
Luis Norambuena-Subiabre ◽  
Carl J. Carrano ◽  
...  

AbstractThe dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms (HABs) worldwide. Blooms of this species have repeatedly brought severe ecological and economic impacts to Chile, especially in the southern region, where the shellfish and salmon industries are world-famous. The mechanisms of such HABs have been intensively studied but are still unclear. Nutrient overloading is one of the often-discussed drivers for HABs. The present study used the A. catenella strain isolated from southern Chile to investigate how iron conditions could affect their growth and toxin production as related to HAB. Our results showed that an optimum concentration of iron was pivotal for proper A. catenella growth. Thus, while excess iron exerted a toxic effect, low iron media led to iron insufficiency and growth inhibition. In addition, the study shows that the degree of paralytic shellfish toxin production by A. catenella varied depending on the iron concentration in the culture media. The A. catenella strain from southern Chile produced GTX1-4 exclusively in the fmol cell−1 scale. Based on these findings, we suggest that including iron and paralytic shellfish toxin measurements in the fields can improve the current HAB monitoring and contribute to an understanding of A. catenella bloom dynamics in Chile.


2021 ◽  
Author(s):  
Javiera Espinoza ◽  
Kyoko Yarimizu ◽  
Satoshi Nagai ◽  
Oscar Espinoza Gonzalez ◽  
Leonardo Guzman ◽  
...  

Alexandrium catenella (Whedon & Kofoid) is a dinoflagellate known as a primary source of paralytic shellfish poisoning in Chile. The distribution range of harmful algal blooms generated by this species has extended during the last decades, and the frequency of these events has increased. In this work, we developed TaqMan markers from Chilean strains that can be used to identify and quantify through qPCR, which can be implemented in monitoring programs for the early detection of this species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sang-Soo Baek ◽  
JongCheol Pyo ◽  
Yong Sung Kwon ◽  
Seong-Jun Chun ◽  
Seung Ho Baek ◽  
...  

In several countries, the public health and fishery industries have suffered from harmful algal blooms (HABs) that have escalated to become a global issue. Though computational modeling offers an effective means to understand and mitigate the adverse effects of HABs, it is challenging to design models that adequately reflect the complexity of HAB dynamics. This paper presents a method involving the application of deep learning to an ocean model for simulating blooms of Alexandrium catenella. The classification and regression convolutional neural network (CNN) models are used for simulating the blooms. The classification CNN determines the bloom initiation while the regression CNN estimates the bloom density. GoogleNet and Resnet 101 are identified as the best structures for the classification and regression CNNs, respectively. The corresponding accuracy and root means square error values are determined as 96.8% and 1.20 [log(cells L–1)], respectively. The results obtained in this study reveal the simulated distribution to follow the Alexandrium catenella bloom. Moreover, Grad-CAM identifies that the salinity and temperature contributed to the initiation of the bloom whereas NH4-N influenced the growth of the bloom.


2021 ◽  
Vol 118 (41) ◽  
pp. e2107387118
Author(s):  
Donald M. Anderson ◽  
Evangeline Fachon ◽  
Robert S. Pickart ◽  
Peigen Lin ◽  
Alexis D. Fischer ◽  
...  

Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.


Sign in / Sign up

Export Citation Format

Share Document