scholarly journals Limitations of serum ferritin to predict liver iron concentration responses to deferasirox therapy in patients with transfusion-dependent thalassaemia

2017 ◽  
Vol 98 (3) ◽  
pp. 280-288 ◽  
Author(s):  
John B. Porter ◽  
Mohsen Elalfy ◽  
Ali Taher ◽  
Yesim Aydinok ◽  
Szu-Hee Lee ◽  
...  
2010 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
John A. Shepherd ◽  
Bo Fan ◽  
Ying Lu ◽  
Lorena Marquez ◽  
Khaled Salama ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3493-3493
Author(s):  
Martin Wermke ◽  
Jan Moritz Middeke ◽  
Nona Shayegi ◽  
Verena Plodeck ◽  
Michael Laniado ◽  
...  

Abstract Abstract 3493 An increased risk for GvHD, infections and liver toxicity after transplant has been attributed to iron overload (defined by serum ferritin) of MDS and AML patients prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nevertheless, the reason for this observation is not very well defined. Consequently, there is a debate whether to use iron chelators in these patients prior to allo-HSCT. In fact, serum ferritin levels and transfusion history are commonly used to guide iron depletion strategies. Both parameters may inadequately reflect body iron stores in MDS and AML patients prior to allo-HSCT. Recently, quantitative magnetic resonance imaging (MRI) was introduced as a tool for direct measurement of liver iron. We therefore aimed at evaluating the accurateness of different strategies for determining iron overload in MDS and AML patients prior to allo-HSCT. Serologic parameters of iron overload (ferritin, iron, transferrin, transferrin saturation, soluble transferrin receptor) and transfusion history were obtained prospectively in MDS or AML patients prior to allo-SCT. In parallel, liver iron content was measured by MRI according to the method described by Gandon (Lancet 2004) and Rose (Eur J Haematol 2006), respectively. A total of 20 AML and 9 MDS patients (median age 59 years, range: 23–74 years) undergoing allo-HSCT have been evaluated so far. The median ferritin concentration was 2237 μg/l (range 572–6594 μg/l) and patients had received a median of 20 transfusions (range 6–127) before transplantation. Serum ferritin was not significantly correlated with transfusion burden (t = 0.207, p = 0.119) but as expected with the concentration of C-reactive protein (t = 0.385, p = 0.003). Median liver iron concentration measured by MRI was 150 μmol/g (range 40–300 μmol/g, normal: < 36 μmol/g). A weak but significant correlation was found between liver iron concentration and ferritin (t = 0.354; p = 0.008). The strength of the correlation was diminished by the influence of 5 outliers with high ferritin concentrations but rather low liver iron content (Figure 1). The same applied to transfusion history which was also only weakly associated with liver iron content (t = 0.365; p = 0.007). Levels of transferrin, transferrin saturation, total iron and soluble transferrin receptor did not predict for liver iron concentration. Our data suggest that serum ferritin or transfusion history cannot be regarded as robust surrogates for the actual iron overload in MDS or AML patients. Therefore we advocate caution when using one of these parameters as the only trigger for chelation therapy or as a risk-factor to predict outcome after allo-HSCT. Figure 1. Correlation of Liver iron content with Ferritin. Figure 1. Correlation of Liver iron content with Ferritin. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 13 (2) ◽  
pp. 712-715
Author(s):  
Mustafa A. Al-Tikrity ◽  
Mohamed A. Yassin

Primary hemochromatosis is an inherited disorder, and the homeostatic iron regulator (HFE) gene C282Y mutation is a common cause of hemochromatosis in Europe. We are reporting a case of a 56-year-old female known to have hemochromatosis with the HFE gene C282Y mutation with a serum ferritin level of 482 μg/L who underwent heart and liver T2* MRI which showed no evidence of iron overload – neither in the heart nor in the liver. This indicates that there is a discrepancy between serum ferritin and liver iron concentration by MRI and the superiority of T2* MRI in diagnosis and follow-up of iron overload in patients with hereditary hemochromatosis.


2018 ◽  
Vol 53 (4) ◽  
pp. 314 ◽  
Author(s):  
Hayder Al-Momen ◽  
Shaymaa Kadhim Jasim ◽  
Qays Ahmed Hassan ◽  
Hayder Hussein Ali

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3789-3789 ◽  
Author(s):  
Zahra Pakbaz ◽  
Roland Fischer ◽  
Richard Gamino ◽  
Ellen B. Fung ◽  
Paul Harmatz ◽  
...  

Abstract Introduction: Monitoring iron overload by serum ferritin in patients with hemosiderosis is still a routine practice although its limitations are widely studied and well known. Using non-invasive liver iron assessment by quantitative MRI or by biomagnetic liver susceptometry (BLS) with SQUID biomagnetometers would be the better alternative, however, these methods are available at only a few centers worldwide. Objective: To determine the relationship between serum ferritin (SF) and liver iron concentration (LIC), measured by BLS at CHRCO, in patients with different types of hemosiderosis. Methods and Patients: A total of 97 patients with thalassemia (TM: 3 to 52 y, 54% females) and 39 patients with sickle cell disease (SCD: 5 to 49 y, 60% female) were prospectively assessed for LIC and SF. Both tests were performed within 2 weeks of each other. Most patients with TM and SCD were chronically transfused, while 10 b-thalassemia intermedia (TI), 5 HbE/β-thalassemia (HbE), and 5 SCD patients were not on transfusion programs. LIC was measured by LTc SQUID biosusceptometer system (Ferritometer®, Model 5700, Tristan Technologies, San Diego, USA) under the standardized Hamburg-Torino-Oakland protocol. A non-parametric test (U-test) was utilized to analyze differences between SF and LIC data. Results: In chronically transfused TM and SCD patients, the median SF and LIC were very similar (Table I). In TI&HbE patients, ferritin results were disproportionately low with respect to LIC. In order to improve prediction of iron stores by SF, the SF/LIC ratio was calculated. There was a significant difference between the median ratios of the two groups of transfused and non- transfused thalassemia patients, 0.82 vs. 0.32 [μg/l]/[μg/gliver], respectively (p < 0.01). In SCD patients the ratio is significantly (p < 0.01) higher. Conclusion: Present data confirm ferritin to be a poor predictor of liver iron stores both in sickle cell disease and thalassemia. Relying only on ferritin to monitor iron overload in patients with hemosiderosis can be misleading, especially, in sickle cell disease and non-transfused thalassemia patients. Taking into account disease specific ferritin-LIC relations, could improve the prediction of iron stores. However, assessment of liver iron stores is the ultimate method to initiate and adjust chelation treatment in order to avoid progressive organ injury. Table I. Median values and ranges ( − ) of serum ferritin (SF) and liver iron concentration (LIC) in transfused (Tx) and non-transfused (non-Tx) hemosiderosis patients. Patient group n SF μg/l] LIC [mg/gliver ] SF:LIC Thalassemia Tx 82 1721 (209–8867) 3424 (364–7570) 0.82 (0.3–1.8) TI &HbE non-Tx 15 766 (52–2681) 2174 (226–5498) 0.32 (0.1–1.4) SCD Tx 34 2757 (400–9138) 1941 (518–6670) 1.2 (0.6–3.3)


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4846-4846 ◽  
Author(s):  
Peter L. Greenberg ◽  
Charles A. Schiffer ◽  
Charles Asa Koller ◽  
Barinder Kang ◽  
Jodie Decker ◽  
...  

Abstract Introduction: Approximately 60% of patients with myelodysplastic syndromes (MDS) require ongoing red blood cell transfusions, which can lead to significant iron overload and associated morbidities. Historically, many of these patients have not received iron chelation therapy due to burdensome administration of deferoxamine. Deferasirox (Exjade®, ICL670) is a once-daily, oral iron chelator recently approved for the treatment of chronic iron overload due to blood transfusions. This ongoing study is designed to evaluate the efficacy and safety of deferasirox in Low/Int-1-risk MDS patients. In addition, this is the first prospective, multicenter trial to evaluate liver iron concentration (LIC) using the MRI R2 parameter in this population. Methods: This ongoing study will enroll 30 patients at three US centers. Deferasirox will be administered at 20–30 mg/kg/day for 12 months. Iron burden is being monitored by monthly serum ferritin evaluations, and LIC by MRI R2 at baseline, 6 and 12 months. Serum iron, transferrin, transferrin saturation, labile plasma iron (LPI), and urinary hepcidin are being assessed throughout the study. In addition, serum creatinine, calculated creatinine clearance, echocardiograms and hematological status are being monitored. In this report, we are presenting the baseline data for the currently enrolled patients. Results: As of May 2006, 14 patients (9 male, 5 female; aged 55–81 years) were enrolled. All patients were Caucasian with equal distribution of Low- and Int-1-risk MDS. The mean interval from MDS diagnosis to screening was 4 years, ranging from &lt;1 to 12 years. The table summarizes baseline iron parameters in these patients: Parameter n Mean ± SD Median Range Normal range n/a, not applicable LIC, mg Fe/g dw 14 21.8 ± 11.0 23.5 3.8–40.5 &lt;1.3 Serum ferritin,μg/L 14 4645 ± 3804 3534.5 1433–15380 20–360 Serum iron, μg/dL 14 205.9 ± 26.5 200 165.9–252.0 50–160 Transferrin, mg/dL 14 143 ± 19 142.5 106–172 200–400 Transferrin saturation, % 14 113.8 ± 8.5 114 95–124 15–50 LPI, μmol/L 14 0.7 ± 0.7 0.6 0–1.9 0 Num. of lifetime transfusions 14 106.3 ± 115.5 47.5 30–352 n/a Renal function: Calculated creatinine clearance at baseline was normal (&gt;80 mL/min) in 46% of patients, mildly impaired (50–80 mL/min) in 46% and moderately impaired (30–50 mL/min) in 8% of patients. Hematological parameters: neutropenia (&lt;1800/μL): 1 patient; thrombocytopenia (&lt;100,000/μL): 3 patients; neutropenia and thrombocytopenia: 1 patient. Concurrent therapies: Revlimid: 2 patients; and hydroxyurea: 1 patient. Conclusions: Baseline iron burden in these patients demonstrates a high degree of iron overload, as measured by LIC via MRI, as well as serum ferritin, serum iron and transferrin saturation. Based on NCCN guidelines for the management of iron overload, the degree of iron overload observed meets criteria for treatment. This ongoing study is assessing the safety and efficacy of deferasirox in this population.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3818-3818
Author(s):  
Ali Taher ◽  
F. El Rassi ◽  
H. Ismaeel ◽  
S. Koussa ◽  
A. Inati

Abstract Background: Unlike patients with thalassemia major (TM), those with thalassemia intermedia (TI) do not require regular blood transfusion therapy but remain susceptible to iron overload due to increased intestinal iron uptake triggered by ineffective erythropoiesis. TI patients can accumulate 1–3.5 g of excess iron per year, and effective monitoring of iron burden is an important element of patient management. Assessment of serum ferritin (SF) levels is a convenient and widely used method, and a correlation between SF and liver iron concentration (LIC) has been demonstrated in patients with TM. SF levels may, however, be a poor indicator of LIC in patients with TI and the limited data available on the SF:LIC correlation prove equivocal; in fact, reports suggest a discrepancy between LIC and SF in patients with TI. This is the largest study to use R2* MRI to evaluate the SF:LIC correlation in patients with TI. Methods: This was a cross-sectional study of randomly selected, infrequently/non-transfused TI patients treated at a chronic care center in Hazmieh, Lebanon. Patient charts were reviewed and a medical history was compiled. Blood samples were taken for SF assessment, and LIC was determined by R2* MRI. Results: Data from 74 TI patients were included in this analysis (33 male, 41 female; mean age 26.5 ± 11.5 years). Of this group, 59 (79.7%) patients were splenectomized, 20 were transfusion-naive, 45 had received several transfusions in their lifetime but none in the past year, and 9 patients were regularly transfused 2–4 times per year. Overall mean SF values were 1023 ± 780 ng/mL (range 15–4140); mean LIC levels were 9.0 ± 7.4 mg Fe/g dry weight [dw] (range 0.5–32.1). In contrast to previous findings, a significant positive correlation between mean LIC and SF values was seen in the whole group (R=0.64; P&lt;0.001), and in a subset of splenectomized patients (R=0.62; P&lt;0.001). In comparison with data obtained from a randomly selected group of patients with TM treated at the center, SF levels in TI were seen to be significantly lower, while the mean LIC values were similar in both groups of TI and TM. For a given LIC, SF values were lower in patients with TI than those with TM (Figure). Conclusions: Evaluation of iron levels shows that many patients with TI have SF and LIC levels above the recommended threshold levels, indicating a risk of significant morbidity/mortality. Similar to TM, a significant correlation between SF and LIC was observed in patients with TI; however, the relationship between SF and LIC was different between TI and TM (for the same LIC, the SF values in TI were lower than those in TM). Therefore, use of the current threshold for iron overload based on SF values in TM will lead to significant underestimation of the severity of iron overload in patients with TI. This may result in delayed chelation therapy, and expose patients to morbidity and mortality risks associated with iron overload. Disease-specific management approaches are therefore required in patients with TI. This includes either regular assessments of LIC, ideally by non-invasive R2* MRI, or lowering the SF threshold for initiating iron chelation in patients with TI. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document