Transcranial direct current stimulation (tDCS) and sporting performance: A systematic review and meta‐analysis of tDCS effects on physical endurance, muscular strength, and visuomotor skills

Author(s):  
Trish Chinzara ◽  
Gavin Buckingham ◽  
David Harris
2021 ◽  
Author(s):  
Trish Chinzara ◽  
Gavin Buckingham ◽  
David Harris

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has been linked with a range of physiological and cognitive enhancements relevant to sporting performance. As a number of positive and null findings have been reported in the literature, the present meta-analysis sought to synthesise results across endurance, strength and visuomotor skill domains to investigate if tDCS improves any aspect of sporting performance. Online database searches in August 2020 identified 43 full-text studies which examined the acute effects of tDCS compared to sham/control conditions on physical endurance, muscular strength and visuomotor skills in healthy adults. The quantitative analysis indicated a small overall effect favouring tDCS stimulation over sham/control (SMD=0.25, CI95%[0.14;0.36]). Effects on strength (SMD=0.31, CI95%[0.10;0.51]) and visuomotor (SMD=0.29, CI95%[0.00;0.57]) tasks were larger than endurance performance (SMD=0.18, CI95%[0.00;0.37]). Meta-regressions indicated effect sizes were not related to stimulation parameters, but genetics, gender, and experience may modulate tDCS effects. The results suggest tDCS has the potential to be used as an ergogenic aid in conjunction with a specified training regime.


2020 ◽  
Vol 127 (9) ◽  
pp. 1257-1270
Author(s):  
Mohammad Alwardat ◽  
Antonio Pisani ◽  
Mohammad Etoom ◽  
Roberta Carpenedo ◽  
Elisabetta Chinè ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Diana M. A. Suarez-García ◽  
Johan S. Grisales-Cárdenas ◽  
Máximo Zimerman ◽  
Juan F. Cardona

Cognitive deficits are increasingly being recognized as a common trait in Parkinson's disease (PD). Recently, transcranial direct current stimulation (tDCS) has been shown to exert positive effects as an adjunctive therapy on motor and non-motor symptoms in PD. This systematic review and meta-analysis aims to provide an overview of reported evidence on the efficacy of tDCS interventions in the treatment of cognitive impairments in PD. A systematic literature review was conducted to examine articles that were published in the past 10 years and that study the effects of tDCS on cognitive deficits in PD patients. The PubMed, Scopus and Scielo databases were searched. Eight tDCS studies involving 168 participants were included for the analysis. Our meta-analysis results showed that anodal tDCS (atDCS) had various levels or no evidence of effectiveness. In the pre-post stimulation analysis, a strong effect was reported for executive functions (pre-post: g = 1.51, Z = 2.41, p = 0.016); non-significant effects were reported for visuospatial skills (pre-post: g = 0.27, Z = 0.69, p = 0.490); attention (pre-post: g = 0.02, Z = 0.08, p = 0.934), memory (pre-post: g = 0.01, Z = 0.03, p = 0.972) and language (pre-post: g = 0.07, Z = 0.21, p = 0.832). However, in the pre-follow-up stimulation analysis, the duration of the effect was not clear. This study highlights the potential effectiveness of atDCS to improve cognitive performance in PD patients but failed to establish a cause-effect relationship between tDCS intervention and cognitive improvement in PD. Future directions and recommendations for methodological improvements are outlined.


Sign in / Sign up

Export Citation Format

Share Document