scholarly journals Applicability of the Guggenheim-Anderson-Boer water vapour sorption model for estimation of soil specific surface area

2017 ◽  
Vol 69 (2) ◽  
pp. 245-255 ◽  
Author(s):  
E. Arthur ◽  
M. Tuller ◽  
P. Moldrup ◽  
M. H. Greve ◽  
M. Knadel ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5508
Author(s):  
Marzena Włodarczyk-Stasiak ◽  
Artur Mazurek

The most popular method for the calculation of specific surface area is its determination from water vapour sorption isotherms. The study presented here has been designed for the purpose of optimisation and selection of the conditions of drying so as to allow the determination of specific surface area from plotted curves of the drying process. The results indicate that drying curves can be used as the basis for the determination of specific surface area, the values of which do not differ statistically significantly (α = 0.05) from those determined from isotherms of water vapour sorption (adsorption/desorption).


2016 ◽  
Vol 30 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Kamil Skic ◽  
Patrycja Boguta ◽  
Zofia Sokołowska

Abstract Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g−1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=−0.736; α = 0.05) as well as ash content (R=−0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g−1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.


2018 ◽  
Vol 32 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Jolanta Cieśla ◽  
Zofia Sokołowska ◽  
Barbara Witkowska-Walczak ◽  
Kamil Skic

AbstractWater vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0−1range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.


1990 ◽  
Vol 55 (8) ◽  
pp. 1920-1927 ◽  
Author(s):  
Ro Yong Zun ◽  
Jaroslava Polednová ◽  
Květa Jirátová

The effect of partial pressure of water vapour (50-750kPa) in air on physical properties of calcinated aluminium hydroxide AlOOH and aluminium oxide Al2O3 was examined. For both materials it was found that increasing pressure of water vapour leads to a decrease in the specific surface area and to an increase in the diameter of their mesopores. However, changes in the surface properties have not been identical: the total acidity of Al2O3 decreased whereas the acidity of calcinated AlOOH passed through a maximum. The total basicity of Al2O3 increased while that of AlOOH decreased.


Sign in / Sign up

Export Citation Format

Share Document