scholarly journals Fast life history traits promote invasion success in amphibians and reptiles

2017 ◽  
Vol 20 (2) ◽  
pp. 222-230 ◽  
Author(s):  
William L. Allen ◽  
Sally E. Street ◽  
Isabella Capellini
2015 ◽  
Vol 144 (3) ◽  
pp. 602-609 ◽  
Author(s):  
Chunlong Liu ◽  
Yifeng Chen ◽  
Julian D. Olden ◽  
Dekui He ◽  
Xiaoyun Sui ◽  
...  

2020 ◽  
Author(s):  
Annemarie van der Marel ◽  
Jane M. Waterman ◽  
Marta López-Darias

AbstractInvasive species –species that have successfully overcome the barriers of transport, introduction, establishment, and spread– are a risk to biodiversity and ecosystem function. Introduction effort is one of the main factors attributed to invasion success, but life history traits are also important as they influence population growth. In this contribution, we first investigated life history traits of the Barbary ground squirrel, Atlantoxerus getulus, a species with a remarkably low introduction effort, and studied whether their exceptional invasion success is due to a very fast life history profile through a comparison of these traits to other successfully invaded mammals. We then examined whether number of founders and/or a fast life history influences invasion success of squirrels. We found that Barbary ground squirrels were on the fast end of the “fast-slow continuum”, but their life history is not the only contributing factor for their invasion success, as the life history profile is comparable to other invasive species that do not have such a low introduction effort. We also found that neither life history traits nor number of founders explained invasion success of introduced squirrels in general. These results contradict the concept that introduction effort is the main factor explaining invasion success, especially in squirrels. Instead, we argue that invasion success can be influenced by multiple aspects of the new habitat or the biology of the introduced species.


2015 ◽  
Vol 18 (10) ◽  
pp. 1099-1107 ◽  
Author(s):  
Isabella Capellini ◽  
Joanna Baker ◽  
William L. Allen ◽  
Sally E. Street ◽  
Chris Venditti

2015 ◽  
Vol 31 (6) ◽  
pp. 563-566 ◽  
Author(s):  
Daniel J. Nicholson ◽  
Christopher Hassall ◽  
Julius A. Frazier

Abstract:This study compared the life histories of Hemidactylus frenatus, a significant invasive gecko, and Phyllodactylus palmeus, a Honduran endemic, over 10 wk, June–August 2013 at 12 study sites on the Honduran island of Cayo Menor of the Cayo Cochinos archipelago where H. frenatus arrived in 2008. Three different life-history traits related to invasion success were measured: body size, fecundity and population size. During the study 140 natives and 37 non-natives were captured, weighed, measured and marked uniquely. The number of gravid females and number of eggs were also recorded. Phyllodactylus palmeus was the significantly larger of the two species (60% larger mass, 25% longer SVL) and had higher population abundance at all 12 study sites with some sites yielding no H. frenatus individuals. However, H. frenatus had a larger proportion of gravid females. Observations that the native species is more common despite being sympatric with a known aggressive invader suggest two possibilities: the island is at the start of an invasion, or that the two species co-exist in a more stable fashion.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2020 ◽  
Vol 27 (4) ◽  
pp. 195-200
Author(s):  
Ufuk Bülbül ◽  
Halime Koç ◽  
Yasemin Odabaş ◽  
Ali İhsan Eroğlu ◽  
Muammer Kurnaz ◽  
...  

Age structure of the eastern spadefoot toad, Pelobates syriacus from the Kızılırmak Delta (Turkey) were assessed using phalangeal skeletochronology. Snout-vent length (SVL) ranged from 42.05 to 86.63 mm in males and 34.03 to 53.27 mm in females. Age of adults ranged from 2 to 8 years in males and 3 to 5 years in females. For both sexes, SVL was significantly correlated with age. Males and females of the toads reached maturity at 2 years of age.


Sign in / Sign up

Export Citation Format

Share Document