scholarly journals Genetic and species‐level biodiversity patterns are linked by demography and ecological opportunity

Evolution ◽  
2021 ◽  
Author(s):  
Chloé Schmidt ◽  
Stéphane Dray ◽  
Colin J. Garroway
Author(s):  
Ariel E. Marcy ◽  
Thomas Guillerme ◽  
Emma Sherratt ◽  
Kevin C. Rowe ◽  
Matthew J. Phillips ◽  
...  

ABSTRACTAmong vertebrates, placental mammals are particularly variable in the covariance between their cranial shapes and body size (allometry), with the notable exception of rodents. Australian murid rodents present an opportunity to assess the cause of this anomaly because they radiated on an ecologically diverse continent unique for lacking other terrestrial placentals. Here we used 3D geometric morphometrics to quantify species-level and evolutionary allometries in 38 species (317 crania) from all Australian murid genera. We ask if ecological opportunity resulted in greater allometric diversity; conversely, we test if intrinsic constraints and/or stabilizing selection conserved allometry. To increase confidence in species-level allometric slopes, we introduce a new phylogeny-based method of bootstrapping and randomly resampling across the whole sample. We found exceedingly conserved allometry across the 10 million year split between Mus and the clade containing Australian murids. Cranial shapes followed craniofacial evolutionary allometry (CREA) patterns, with larger species having relatively longer snouts and smaller braincases. CREA is consistent with both intrinsic constraints and stabilizing selection hypotheses for conserved allometry. However, large-bodied frugivores evolved faster, while carnivorous specialists showed skull modifications known to conflict with masticatory efficiency. These results suggest a strong role of stabilizing selection on the masticatory apparatus of murid rodents.


2017 ◽  
Vol 66 (1) ◽  
pp. 204 ◽  
Author(s):  
Ivanna Gabriela Cruz ◽  
Victor Manuel Torres ◽  
Andrea Ximena González-Reyes ◽  
José Antonio Corronca

The increased degradation of natural habitats has strengthened the need to know and assess biodiversity patterns. Particularly, the study of the araneofauna in the North of Argentina is scarce in ecoregions with priority interests of conservation. Generally, spiders are used as indicators to compare biodiversity patterns, and here we tested whether the spider family-level can act as a substitute of the species-level in biodiversity rapid assessments. For this, we analyzed the alpha and beta diversity of the epigeal spider communities in three separate sites of different ecoregions of Salta province (Chaco Serrano, Monte de Sierras and Bolsones, and Puna), during the fall, winter, spring and summer of 2005 -2007. In each site, 10 pitfall traps, located along a linear transect and 10 meters apart, were placed for seven days per season of continuous activity. Samples were obtained, taken to the laboratory and identified. A total of 886 spiders were collected from 100 species/morphospecies of 19 families. The completeness of the inventory obtained for each ecoregion surpassed 70 %. The Chaco ecoregion (S = 56, N = 495) reported the highest species richness and abundance compared to Monte (S = 44, N = 262) and Puna (S = 23, N = 129). Alpha and beta diversity showed that ecoregional spider communities were different, sharing between them very few species (0.7 %). The Chaco reported a high dissimilarity of its assemblage with respect to the other ecoregions. The colder seasons (autumn and winter) proved to be important in assessing the diversity of spiders in these ecoregions, contributing to regional diversity in conjunction with the diversity of warm seasons (spring and summer). Four guilds were reported (ground hunters, specialists, other hunters and ambush hunters), but the latter was absent in Monte, and the specialists dominated in Chaco. Zodariidae was dominant in Chaco Serrano, where Leprolochus birabeni is an indicator of native environments. On the other hand, Lycosidae, Philodromidae, Anyphaenidae and Oonopidae were important for Monte and Puna. This way, the use of pitfall traps in all seasons of the year, and the recognition of spider families for epigeal fauna, was very useful for biodiversity rapid assessments in this area. Like the species-level, the taxonomic family-level evidenced changes in alpha and beta diversity. This allowed the inclusion of this taxonomic group for future biodiversity monitoring studies for conservation plans in these ecoregions.


Author(s):  
I.M. Ritchie ◽  
C.C. Boswell ◽  
A.M. Badland

HERBACE DISSECTION is the process in which samples of herbage cut from trials are separated by hand into component species. Heavy reliance is placed on herbage dissection as an analytical tool ,in New Zealand, and in the four botanical analysis laboratories in the Research Division of the Ministry of Agriculture and Fisheries about 20 000 samples are analysed each year. In the laboratory a representative subsample is taken by a rigorous quartering procedure until approximately 400 pieces of herbage remain. Each leaf fragment is then identified to species level or groups of these as appropriate. The fractions are then dried and the composition calculated on a percentage dry weight basis. The accuracy of the analyses of these laboratories has been monitored by a system of interchanging herbage dissection samples between them. From this, the need to separate subsampling errors from problems of plant identification was, appreciated and some of this work is described here.


Sign in / Sign up

Export Citation Format

Share Document