scholarly journals Ambient changes exceed treatment effects on plant species abundance in global change experiments

2018 ◽  
Vol 24 (12) ◽  
pp. 5668-5679 ◽  
Author(s):  
J. Adam Langley ◽  
Samantha K. Chapman ◽  
Kimberly J. La Pierre ◽  
Meghan Avolio ◽  
William D. Bowman ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 534
Author(s):  
Pavel Samec ◽  
Jiří Volánek ◽  
Miloš Kučera ◽  
Pavel Cudlín

Plant distribution is most closely associated with the abiotic environment. The abiotic environment affects plant species’ abundancy unevenly. The asymmetry is further deviated by human interventions. Contrarily, soil properties preserve environmental influences from the anthropogenic perturbations. The study examined the supra-regional similarities of soil effects on plant species’ abundance in temperate forests to determine: (i) spatial relationships between soil property and forest-plant diversity among geographical regions; (ii) whether the spatial dependencies among compared forest-diversity components are influenced by natural forest representation. The spatial dependence was assessed using geographically weighted regression (GWR) of soil properties and plant species abundance from forest stands among 91 biogeographical regions in the Czech Republic (Central Europe). Regional soil properties and plant species abundance were acquired from 7550 national forest inventory plots positioned in a 4 × 4 km grid. The effect of natural forests was assessed using linear regression between the sums of squared GWR residues and protected forest distribution in the regions. Total diversity of forest plants is significantly dependent on soil-group representation. The soil-group effect is more significant than that of bedrock bodies, most of all in biogeographical regions with protected forest representation >50%. Effects of soil chemical properties were not affected by protected forest distribution. Spatial dependency analysis separated biogeographical regions of optimal forest plant diversity from those where inadequate forest-ecosystem diversity should be increased alongside soil diversity.


2021 ◽  
Author(s):  
Josep Padullés Cubino ◽  
Irena Axmanová ◽  
Zdeňka Lososová ◽  
Martin Večeřa ◽  
Ariel Bergamini ◽  
...  

2006 ◽  
Vol 16 (5) ◽  
pp. 1785-1795 ◽  
Author(s):  
Peter M. van Bodegom ◽  
Annelies Oosthoek ◽  
Rob Broekman ◽  
Chris Bakker ◽  
Rien Aerts

2019 ◽  
Author(s):  
Brian Joseph Enquist ◽  
Xiao Feng ◽  
Bradley Boyle ◽  
Brian Maitner ◽  
Erica A. Newman ◽  
...  

A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant species observation data in order to quantify the fraction of Earth’s extant land plant biodiversity that is common versus rare. Tests of different hypotheses for the origin of species commonness and rarity indicates that sampling biases and prominent models such as niche theory and neutral theory cannot account for the observed prevalence of rare species. Instead, the distribution of commonness is best approximated by heavy-tailed distributions like the Pareto or Poisson-lognormal distributions. As a result, a large fraction, ~36.5% of an estimated ~435k total plant species, are exceedingly rare. We also show that rare species tend to cluster in a small number of ‘hotspots’ mainly characterized by being in tropical and subtropical mountains and areas that have experienced greater climate stability. Our results indicate that (i) non-neutral processes, likely associated with reduced risk of extinction, have maintained a large fraction of Earth’s plant species but that (ii) climate change and human impact appear to now and will disproportionately impact rare species. Together, these results point to a large fraction of Earth’s plant species are faced with increased chances of extinction. Our results indicate that global species abundance distributions have important implications for conservation planning in this era of rapid global change.


Author(s):  
P. C. Nnadi ◽  
B. B. Otene ◽  
Nwiisator David-Sarogoro

This study was carried out to examine the distribution of plant species in Rivers State University campus at different locations at the Rivers State University Nkpolu-Oroworukwo Port Harcourt Nigeria. The general objective of this study was to examine the Ecological distribution of plant species in Rivers State University campus at different locations. The specific objective was to determine the species abundance of various plants in the study area and also to examine the ecological diversity of tree species in the various groups. The study area was divided into three groups (stations) with the various plants species identified and recorded. Data gotten from the field was analyzed using descriptive statistic and some ecological indices such as Margalef, Mehinick, Shannon diversity, Shannon Wiener, Evenness/Equitability and Simpson dominance.  A total of one thousand Sixty-nine (1069) individual plant were identified with 16, 17 and 12 species in stations 1-3 respectively. The highest individual plants (561) were observed in station 1 while the least (87) were observed in station 3. The mean values of stations 1 and 2 were significantly and statistically different from site 3 at p<0.05. The results obtained showed some dominant species to include Elaeis guincensis, Polyaithia longifolia, Pinus spp, Gmelina arborea, Wodyetia bifareata, Citrus sinensis, Cocos nuciferia while others were the least dominant species found in the study area. The Margalef, Mehinicks and Shannon Wiener values were consistently highest in station 2 but lowest in station 3.  Human disturbances had negative impact on tree species abundance especially in site 3. It is therefore recommended that management interventions are necessary in other to stop indiscriminate felling of the various trees species that made up the different groups.


2018 ◽  
Vol 107 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Miguel Berdugo ◽  
Fernando T. Maestre ◽  
Sonia Kéfi ◽  
Nicolas Gross ◽  
Yoann Le Bagousse‐Pinguet ◽  
...  

2019 ◽  
Vol 5 (11) ◽  
pp. eaaz0414 ◽  
Author(s):  
Brian J. Enquist ◽  
Xiao Feng ◽  
Brad Boyle ◽  
Brian Maitner ◽  
Erica A. Newman ◽  
...  

A key feature of life’s diversity is that some species are common but many more are rare. Nonetheless, at global scales, we do not know what fraction of biodiversity consists of rare species. Here, we present the largest compilation of global plant diversity to quantify the fraction of Earth’s plant biodiversity that are rare. A large fraction, ~36.5% of Earth’s ~435,000 plant species, are exceedingly rare. Sampling biases and prominent models, such as neutral theory and the k-niche model, cannot account for the observed prevalence of rarity. Our results indicate that (i) climatically more stable regions have harbored rare species and hence a large fraction of Earth’s plant species via reduced extinction risk but that (ii) climate change and human land use are now disproportionately impacting rare species. Estimates of global species abundance distributions have important implications for risk assessments and conservation planning in this era of rapid global change.


2018 ◽  
Vol 115 (8) ◽  
pp. 1848-1853 ◽  
Author(s):  
Sabine B. Rumpf ◽  
Karl Hülber ◽  
Günther Klonner ◽  
Dietmar Moser ◽  
Martin Schütz ◽  
...  

Many studies report that mountain plant species are shifting upward in elevation. However, the majority of these reports focus on shifts of upper limits. Here, we expand the focus and simultaneously analyze changes of both range limits, optima, and abundances of 183 mountain plant species. We therefore resurveyed 1,576 vegetation plots first recorded before 1970 in the European Alps. We found that both range limits and optima shifted upward in elevation, but the most pronounced trend was a mean increase in species abundance. Despite huge species-specific variation, range dynamics showed a consistent trend along the elevational gradient: Both range limits and optima shifted upslope faster the lower they were situated historically, and species’ abundance increased more for species from lower elevations. Traits affecting the species’ dispersal and persistence capacity were not related to their range dynamics. Using indicator values to stratify species by their thermal and nutrient demands revealed that elevational ranges of thermophilic species tended to expand, while those of cold-adapted species tended to contract. Abundance increases were strongest for nutriphilous species. These results suggest that recent climate warming interacted with airborne nitrogen deposition in driving the observed dynamics. So far, the majority of species appear as “winners” of recent changes, yet “losers” are overrepresented among high-elevation, cold-adapted species with low nutrient demands. In the decades to come, high-alpine species may hence face the double pressure of climatic changes and novel, superior competitors that move up faster than they themselves can escape to even higher elevations.


Sign in / Sign up

Export Citation Format

Share Document