scholarly journals Evapotranspiration, crop coefficient and water use efficiency of giant reed (Arundo donaxL.) and miscanthus (Miscanthus × giganteusGreef et Deu.) in a Mediterranean environment.

GCB Bioenergy ◽  
2014 ◽  
Vol 7 (4) ◽  
pp. 811-819 ◽  
Author(s):  
Federico Triana ◽  
Nicoletta Nassi o Di Nasso ◽  
Giorgio Ragaglini ◽  
Neri Roncucci ◽  
Enrico Bonari
Irriga ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 352
Author(s):  
HIPÓLITO MURGA-ORRILLO ◽  
WELLINGTON FARIAS ARAUJO ◽  
CARLOS ABANTO RODRIGUEZ ◽  
RICARDO MANUEL BARDALES LOZANO ◽  
ROBERTO TADASHI SAKAZAKI ◽  
...  

INFLUÊNCIA DA COBERTURA MORTA NA EVAPOTRANSPIRAÇÃO, COEFICIENTE DE CULTIVO E EFICIÊNCIA DE USO DE ÁGUA DO MILHO CULTIVADO EM CERRADO HIPÓLITO MURGA-ORRILLO1; WELLINGTON FARIAS ARAÚJO2; CARLOS ABANTO-RODRIGUEZ3; ROBERTO TADASHI SAKAZAKI4; RICARDO MANUEL BARDALES-LOZANO5 E ANA ROSA POLO-VARGAS6 1Engenheiro Agrônomo, Prof. Auxiliar, Universidad Nacional Autónoma de Chota, (UNACH), Jr. Gregorio Malca Nº 875- Campus Colpa Matara, Chota, Perú. [email protected] Agrônomo, Prof. Dr. Associado da UFRR/CCA, Boa Vista, RR. [email protected] Florestal, Investigador no Instituto de Investigaciones de la Amazonía Peruana, Carretera Federico Basadre, Km 12,400, Yarinacocha, Ucayali, Perú. [email protected] Agrônomo, Doutorando na UFRR/CCA, Boa Vista, RR. [email protected] Agrônomo, Doutorando na UFRR/Bionorte, Boa Vista, RR. [email protected] Agrônoma, Graduada na Universidad Nacional de Cajamarca, (UNC), Av. Atahualpa Nº 1050- Carretera Cajamarca-Baños del Inca, Cajamarca, Perú. [email protected]  1 RESUMOA irrigação consome grande quantidade de água, sendo importante um adequado manejo da cultura para minimizar esse consumo, maximizando a produção. No intuito de obter informações para o manejo da irrigação, objetivou-se com o presente trabalho determinar a evapotranspiração da cultura (ETc), o coeficiente de cultivo (Kc) e a eficiência do uso de água (EUAg) da cultura de milho, em solo com e sem cobertura, durante os diferentes estádios de desenvolvimento, utilizando lisímetros de drenagem. O experimento foi conduzido no campus Cauamé da Universidade Federal de Roraima, entre 19/04/2014 e 07/08/2014, em Boa Vista, RR. A evapotranspiração de referência (ETo) foi estimada pelo método de Penman-Monteith FAO. Os resultados da ETc do milho, durante o ciclo da cultura, em solo sem e com cobertura foram de 421,5 e 351,0 mm, respectivamente. As médias diárias de ETc foram de 4,1 mm dia-1 para solo sem cobertura e 3,4 mm dia-1 para solo com cobertura. A cobertura do solo propiciou valores diferentes de Kc's para o milho, nos mesmos estádios, em comparação aos Kc’s do solo descoberto. Para o solo descoberto, os Kc’s observados para os estádios fenológicos I, II, III, e IV, foram de 0,40; 0,84; 1,59 e 0,81, respectivamente. Já para solo com cobertura, os Kc’s pelos mesmos estádios em menção foram 0,28; 0,64; 1,49 e 0,48, respectivamente. A EUAg para solo com cobertura foi 1,77 kg m-3 e para solo sem cobertura foi 1,65 kg m-3. Estes resultados mostram que a cobertura morta no solo influenciou no consumo hídrico do milho durante todo seu ciclo. Palavras-chave: Zea mays. Irrigação. Solo coberto. Consumo hídrico.  MURGA-ORRILLO, H.; ARAÚJO, W. F.; ABANTO-RODRIGUEZ C.; SAKAZAKI, R. T.; BARDALES-LOZANO R. M.; POLO-VARGAS, A. R.MULCH INFLUENCE ON EVAPOTRANSPIRATION, CROP COEFFICIENT AND WATER USE EFFICIENCY OF CORN GROWN IN THE SAVANNAH   2 ABSTRACTIrrigation consumes large amounts of water, and minimizing consumption and maximizing the production are  important to a proper crop management . In order to obtain information for irrigation management, the aim of the present study was to determine evapotranspiration (ETc),  crop coefficient (Kc) and  water use efficiency (WUE) of maize grown in soil with and without cover, during the various stages of development, using drainage lysimeters. The experiment was conducted in Cauamé campus of the Federal University of Roraima, from 19/04/2014 to 08/07/2014, in Boa Vista, RR. The reference evapotranspiration (ETo) was estimated by the Penman-Monteith method. The results of the corn ETc during the crop cycle in soil with and without coverage were 421.5 and 351.0 mm, respectively. The daily average of ETc were 4.1 mm day-1 for bare soil and 3.4 mm day-1 for soil with cover. The ground cover led to different values of Kc's for corn in the same stages as compared to Kc's from the bare ground. For bare soil, the Kc's observed for the phenological stages I, II, III, and IV were 0.40; 0.84; 1.59 and 0.81, respectively. As for covered soil, the Kc's in the same stadiums mentioned were 0.28; 0.64; 1.49 and 0.48, respectively. The WUE to soil with cover was 1.77 kg m-3 and ground without cover was 1.65 kg m-3. These results show that  soil mulching influenceS maize water consumption throughout its cycle. Keywords: Zea mays. Irrigation. Ground covered. Water consumption.


2018 ◽  
Vol 36 (4) ◽  
pp. 446-452 ◽  
Author(s):  
Vicente de PR da Silva ◽  
Inajá Francisco de Sousa ◽  
Alexandra L Tavares ◽  
Thieres George F da Silva ◽  
Bernardo B da Silva ◽  
...  

ABSTRACT The water scarcity is expected to intensify in the future and irrigation becomes an essential component of crop production, especially in arid and semiarid regions, where the available water resources are limited. Four field experiments were carried out at tropical environment in Brazil in 2013 and 2014, in order to evaluate the effect of planting date on crop evapotranspiration (ETc), crop coefficient (Kc), growth parameters and water use efficiency (WUE) of coriander (Coriandrum sativum) plants. The planting dates occurred during winter, spring, summer and autumn growing seasons. ETc was obtained through the soil water balance method and the reference evapotranspiration (ETo) through the Penman-Monteith method, using data collected from an automatic weather station located close to the experimental area. The results of the research showed that the mean values of coriander ETc and Kc were 139.8 mm and 0.87, respectively. Coriander water demand is higher in the summer growing season and lower in the winter; however, its yield is higher in the autumn and lower in the winter. Coriander has higher yield and development of its growth variables in the autumn growing season. The results also indicated that the interannual climate variations had significant effects on most growth variables, as yield, ETc and Kc of coriander grown in tropical environment.


1993 ◽  
Vol 44 (4) ◽  
pp. 661 ◽  
Author(s):  
IAM Yunusa ◽  
RK Belford ◽  
D Tennant ◽  
RH Sedgley

The loss of moisture by evaporation from soil under crop canopies (Esc) has been recognized as a major cause of poor water use efficiency (WUE), and hence poor grain yield, in crops grown in environments with limited rainfall. Agronomic approaches to restrain Esc aim to reduce the transmission of solar radiation to the soil beneath the crop by improving ground cover by the crop canopy. However, the sparse canopies produced in these environments have a limited effect on evaporation during the energy dependent first stage (Es1); much of the evaporation is independent of energy at the soilsurface (Es2), and therefore less sensitive to the influence of the crop canopy. Manipulating plant arrangement, primarily by changing row spacing, may provide a simple approach for improving ground cover and restraining E,, without changing GAI, and thus improving WUE and grain yield. To explore the potential benefit of variable row spacing on Esc and grain yield in the dry (300 mm) Mediterranean environment of the eastern wheatbelt of Western Australia, spring wheat was grown in 0.09, 0.18, 0.27 and 0.36 m row spacings on coarse textured and fine textured soil types at Merredin in 1989. Esc was determined with an empirical model and measured with microlysimeters. Row spacing had no significant effect on the development of green area index (GAI), dry matter (DM) accumulation and evapotranspiration (ET) throughout the season. However, in mid-season, the proportion of ground covered by the canopy was higher and transmission of solar radiation was reduced in the 0.09 m row spacing compared with the 0.36 m row spacing. These effects did not restrain E,,, which was similar in all treatments. Esc was not restrained even when the plant density was doubled in the 0.09 m row spacing treatment. Esc during the season averaged 88 mm across all row spacings on both soils; this accounted for 56% and 48% of the mean seasonal ET on the coarse textured and fine textured soils respectively. Consequently, neither water use efficiency nor grain yield were affected by variation in row spacing; water use efficiency averaged 25 kg DM ha-1 mm-1 on both soil types. For dry Mediterranean environments of Western Australia, it was concluded on the basis of these results, and yield data from other row spacing trials in the same districts, that there are no significant yield benefits to be obtained by reducing the row spacing from the current spacing of 0.18 m.


Author(s):  
Marcelo R. dos Santos ◽  
Sérgio L. R. Donato ◽  
Lilian L. Lourenço ◽  
Tânia S. Silva ◽  
Mauricio A. Coelho Filho

ABSTRACT This study aimed to analyze different irrigation strategies in two cultivars of the banana crop. The study was conducted in four production cycles of ‘Prata-Anã’ and ‘BRS Platina’ bananas. The applied irrigation depths (ID) were obtained by the model ID = K x LA x ETo, where K is an empirical transpiration constant of 0.20; 0.35; 0.50 and 0.65 for the strategies 1, 2, 3 and 4, respectively; LA is the leaf area of mother and daughter plants of ‘Prata-Anã’ and ETo is the reference evapotranspiration. The strategy 5 was obtained according to the crop evapotranspiration, ETc = ETo x Kc, where Kc is the crop coefficient. Drip irrigation system was used, with two laterals per plant row and emitters with flow rate of 8 L h-1, spaced at 0.50 m. It was found that ‘Prata-Anã’ is more efficient than ‘BRS Platina’ in terms of water use and the model for irrigation management, ID = 0.35 x LA x ETo, is recommended to optimize water use by ‘Prata-Anã’ and ‘BRS Platina’ bananas, with increase in water use efficiency and maintenance of yield. The same model, with K coefficient equal to 0.50, makes it possible to obtain yield and water use efficiency equal to those obtained with irrigation management based on the ETc.


2009 ◽  
Vol 111 (1-2) ◽  
pp. 65-73 ◽  
Author(s):  
Yang Gao ◽  
Aiwang Duan ◽  
Jingsheng Sun ◽  
Fusheng Li ◽  
Zugui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document