Automated detection and classification of teardrop cells by a novel RBC module using digital imaging/microscopy

2015 ◽  
Vol 37 (6) ◽  
pp. e153-e156 ◽  
Author(s):  
A. Egelé ◽  
W. van Gelder ◽  
J. Riedl
2020 ◽  
Vol 49 (10) ◽  
pp. 1623-1632
Author(s):  
Paul H. Yi ◽  
Tae Kyung Kim ◽  
Jinchi Wei ◽  
Xinning Li ◽  
Gregory D. Hager ◽  
...  

2021 ◽  
Vol 32 (2) ◽  
Author(s):  
Siqi Zhou ◽  
Yufeng Bi ◽  
Xu Wei ◽  
Jiachen Liu ◽  
Zixin Ye ◽  
...  
Keyword(s):  

2012 ◽  
Author(s):  
Ghafour Amouzad Mahdiraji ◽  
Azah Mohamed

Satu aspek penting dalam penilaian kualiti kuasa adalah pengesanan dan pengkelasan gangguan kualiti kuasa secara automatik yang memerlukan penggunaan teknik kepintaran buatan. Kertas kerja ini membentangkan penggunaan sistem pakar-kabur untuk pengkelasan gangguan voltan jangka masa pendek yang termasuk lendut voltan, ampul dan sampukan. Untuk memperolehi sifat unik bagi gangguan voltan, analisis jelmaan Fourier pantas dan teknik purataan punca min kuasa dua digunakan untuk menentukan parameter gangguan seperti tempoh masa, magnitud voltan pmk maksimum dan minimum. Berasaskan pada parameter ini, sebuah sistem pakar–kabur telah dibangunkan dengan mengset aturan kabur yang menimbangkan lima masukan dan tiga keluaran. Sistem ini direka bentuk untuk mengesan dan mengkelaskan tiga jenis gangguan voltan tempoh masa pendek dengan menentukan sama ada gangguan adalah gangguan ketika, gangguan seketika dan bukan gangguan lendut, ampul dan sampukan. Untuk mengesahkan kejituan sistem yang dicadangkan, ia telah diuji dengan gangguan voltan yang diperolehi dari pengawasan. Keputusan ujian menunjukkan bahawa sistem pakar–kabur yang dibangunkan telah memberikan kadar pengkelasan yang betul sebanyak 98.4 %. Kata kunci: Kualiti kuasa, sistem pakar–kabur, lendut, ampul dan sampukan One of the important aspects in power quality assessment is automated detection and classification of power quality disturbances which requires the use of artificial intelligent techniques. This paper presents the application of fuzzy–expert system for classification of short duration voltage disturbances which include voltage sag, swell and interruption. To obtain unique features of the voltage disturbances, fast Fourier transform analysis and root mean square averaging technique are utilized so as to determine the disturbance parameters such as duration, maximum and minimum rms voltage magnitudes. Based on these parameters, a fuzzy-expert system has been developed to set the fuzzy rules incorporating five inputs and three outputs. The system is designed for detecting and classifying the three types of short duration voltage disturbances, so as to determine whether the disturbance is instantaneous, momentary and non sag, swell and interruption. To verify the accuracy of the proposed system, it has been tested with recorded voltage disturbances obtained from monitoring. Tests results showed that the developed fuzzy–expert system gives a correct classification rate of 98.4 %. Key words: Power quality, fuzzy–expert system, sag, swell and interruption.


Science ◽  
1985 ◽  
Vol 230 (4723) ◽  
pp. 247-256 ◽  
Author(s):  
D. Arndt-Jovin ◽  
M Robert-Nicoud ◽  
S. Kaufman ◽  
T. Jovin

Cytometry ◽  
1992 ◽  
Vol 13 (8) ◽  
pp. 839-845 ◽  
Author(s):  
P. M. Nederlof ◽  
S. van der Flier ◽  
J. Vrolijk ◽  
H. J. Tanke ◽  
A. K. Raap

1988 ◽  
Vol 106 (4) ◽  
pp. 1185-1192 ◽  
Author(s):  
G J Gorbsky ◽  
P J Sammak ◽  
G G Borisy

Chromosome segregation in most animal cells is brought about through two events: the movement of the chromosomes to the poles (anaphase A) and the movement of the poles away from each other (anaphase B). Essential to an understanding of the mechanism of mitosis is information on the relative movements of components of the spindle and identification of sites of subunit loss from shortening microtubules. Through use of tubulin derivatized with X-rhodamine, photobleaching, and digital imaging microscopy of living cells, we directly determined the relative movements of poles, chromosomes, and a marked domain on kinetochore fibers during anaphase. During chromosome movement and pole-pole separation, the marked domain did not move significantly with respect to the near pole. Therefore, the kinetochore microtubules were shortened by the loss of subunits at the kinetochore, although a small amount of subunit loss elsewhere was not excluded. In anaphase A, chromosomes moved on kinetochore microtubules that remained stationary with respect to the near pole. In anaphase B, the kinetochore fiber microtubules accompanied the near pole in its movement away from the opposite pole. These results eliminate models of anaphase in which microtubules are thought to be traction elements that are drawn to and depolymerized at the pole. Our results are compatible with models of anaphase in which the kinetochore fiber microtubules remain anchored at the pole and in which microtubule dynamics are centered at the kinetochore.


Sign in / Sign up

Export Citation Format

Share Document