Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems

2004 ◽  
Vol 41 (6) ◽  
pp. 1065-1079 ◽  
Author(s):  
GUILLAUME DECOCQ ◽  
MICHAËL AUBERT ◽  
FREDERIC DUPONT ◽  
DIDIER ALARD ◽  
ROBERT SAGUEZ ◽  
...  
Ecology ◽  
2012 ◽  
Author(s):  
Frank S. Gilliam

Given the global distribution of human populations and their coincidence with temperate deciduous forests, it is likely that when most people consider the term “forest,” what comes to mind most frequently is the temperate deciduous forest biome. Although not to the level of their tropical counterparts, temperate deciduous forests typically display high plant biodiversity and rates of net primary productivity. They contrast sharply, however, with tropical forests in the distribution of biodiversity and productivity. In tropical forests, greatest plant diversity is associated with the vegetation of greatest productivity—trees. By contrast, the greatest plant diversity—up to 90 percent—in temperate deciduous forests occurs among the plants of least physical stature: the herbaceous species. Given the close association between these forests and their use by human populations, whether for food, fiber, habitat, or recreation, it is not surprising that they have been well studied, particularly in North America, and thus have a rich literature going back many years. However, for the very reason of that intensive use, temperate deciduous forests have proved to be an ecological moving target, as timber harvesting, air pollution, and introduced pests (e.g., insects and parasites) have represented a chronic assault on the structure and function of these ecosystems.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fan Liu ◽  
Chuankuan Wang ◽  
Xingchang Wang

Abstract Background Vegetation indices (VIs) by remote sensing are widely used as simple proxies of the gross primary production (GPP) of vegetation, but their performances in capturing the inter-annual variation (IAV) in GPP remain uncertain. Methods We evaluated the performances of various VIs in tracking the IAV in GPP estimated by eddy covariance in a temperate deciduous forest of Northeast China. The VIs assessed included the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the near-infrared reflectance of vegetation (NIRv) obtained from tower-radiometers (broadband) and the Moderate Resolution Imaging Spectroradiometer (MODIS), respectively. Results We found that 25%–35% amplitude of the broadband EVI tracked the start of growing season derived by GPP (R2: 0.56–0.60, bias < 4 d), while 45% (or 50%) amplitudes of broadband (or MODIS) NDVI represented the end of growing season estimated by GPP (R2: 0.58–0.67, bias < 3 d). However, all the VIs failed to characterize the summer peaks of GPP. The growing-season integrals but not averaged values of the broadband NDVI, MODIS NIRv and EVI were robust surrogates of the IAV in GPP (R2: 0.40–0.67). Conclusion These findings illustrate that specific VIs are effective only to capture the GPP phenology but not the GPP peak, while the integral VIs have the potential to mirror the IAV in GPP.


2004 ◽  
Vol 188 (1-3) ◽  
pp. 197-210 ◽  
Author(s):  
Annett Wolf ◽  
Peter Friis Møller ◽  
Richard H.W. Bradshaw ◽  
Jaris Bigler

Sign in / Sign up

Export Citation Format

Share Document