Long-term changes in growth and age at maturity of mackerel, Scomber scombrus L., from the North Sea

2006 ◽  
Vol 35 ◽  
pp. 305-311 ◽  
Author(s):  
A.-L. Agnalt
Author(s):  
P. E. P. Norton

SynopsisThis is a brief review intended to supply bases for prediction of future changes in the North Sea Benthos. It surveys long-term changes which are affecting the benthos. Any prediction must take into account change in temperature, depth, bottom type, tidal patterns, current patterns and zoogeography of the sea and the history of these is briefly touched on from late Tertiary times up to the present. From a prediction of changes in the benthos, certain information concerning the pelagic and planktonic biota could also be derived.


Author(s):  
S. H. Coombs ◽  
C. E. Mitchell

The distribution, abundance and seasonal occurrence of larvae of mackerel (Scomber scombrus L.) are described from routine Continuous Plankton Recorder (CPR) sampling around the British Isles over the period 1948–78, and from more intensive CPR sampling in the Celtic Sea in 1977. There were two main areas of larval concentration: in the North Sea and over and adjacent to the Celtic Plateau; subsidiary aggregations were observed to the northwest of Ireland and to the west of Norway. There were some similarities between the distribution of larvae around the British Isles and that of adult Calanus spp. In the North Sea there was a southerly shift of larval distribution over the period 1948–77; over a similar period the abundance of larvae increased to reach high numbers by the late 1950s and subsequently declined after the mid-6os. To the south-west of the British Isles numbers of larvae showed a long-term decline. The long-term trends of distribution and abundance are discussed in relation to concurrent biological and environmental change. The clearest relationship was found between the numbers of mackerel larvae in the North Sea and sea-surface temperature in the North Atlantic, which suggests a common causative agent for both sets of observations; also, there was a weak relationship with both spawning stock biomass and sea-surface temperature at the spawning areas. In the North Sea the seasonal occurrence of larvae was from May to August, the majority being taken in June and July; over the period 1948–77 the seasonal time of occurrence of highest numbers of larvae has remained relatively constant. In the Celtic Sea the seasonal occurrence of larvae was spread over a longer period, from March to August, with relatively high numbers from March to June; over the period 1950–78 the time of occurrence has been variable, possibly with a tendency towards later timing in more recent years.


2001 ◽  
Vol 9 (3) ◽  
pp. 131-187 ◽  
Author(s):  
R A Clark ◽  
C LJ Frid

Long-term data on the North Sea ecosystem are available for phytoplanktonic, zooplanktonic, benthic, fish, and seabird communities. Temporal changes in these have been examined by numerous researchers over the course of the 20th century, their main objective being to determine how the interannual dynamics of these communities are controlled. Ultimately, long-term changes in the North Sea ecosystem appear to be driven by two wide-ranging, but separate processes. In the northern, western and central areas of the North Sea, long-term changes are predominantly influenced by climatic fluctuations. Here, primary productivity during a particular year is related to the effect of weather on the timing of stratification and the resulting spring bloom. In the southern and eastern areas of the North Sea, the lack of stratification and the large inputs of nutrients mean that primary productivity is more strongly influenced by variations in anthropogenic nutrient inputs, and is only weakly related to climatic variation. Long-term changes at higher trophic levels (zooplankton, benthic, fish, and seabirds) are generally affected by fluctuations in their food source (i.e., the lower trophic levels), although because of the high complexity of the North Sea ecosystem there are many exceptions to these general patterns. However, the weight of evidence shows that long-term changes in the ecosystem may ultimately be related to long-term changes in either climate or nutrients, although the long-term dynamics of certain taxa and communities do show evidence of being influenced by both anthropogenic factors and (or) internal factors such as competition and predation. Key words: long-term changes, North Sea, time series, climate change, ecosystem functioning, anthropogenic impacts.


2001 ◽  
Vol 31 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Philip C. Reid ◽  
Martin Edwards

Sign in / Sign up

Export Citation Format

Share Document