Effect of vitamin A on the skeletal morphogenesis of European sea bass, Dicentrarchus labrax (Linnaeus, 1758)

2010 ◽  
Vol 42 (5) ◽  
pp. 684-692 ◽  
Author(s):  
Ioanna Georga ◽  
Nomiki Glynatsi ◽  
Athanasios Baltzois ◽  
Dimitrios Karamanos ◽  
David Mazurais ◽  
...  
Aquaculture ◽  
2009 ◽  
Vol 294 (3-4) ◽  
pp. 262-270 ◽  
Author(s):  
David Mazurais ◽  
Nomiki Glynatsi ◽  
Maria J. Darias ◽  
Stavroula Christodoulopoulou ◽  
Chantal L. Cahu ◽  
...  

2006 ◽  
Vol 95 (4) ◽  
pp. 677-687 ◽  
Author(s):  
Laure A. N. Villeneuve ◽  
Enric Gisbert ◽  
Jacques Moriceau ◽  
Chantal L. Cahu ◽  
José L. Zambonino Infante

The effect of the feeding period on larval development was investigated in European sea bass larvae by considering the expression level of some genes involved in morphogenesis. Larvae were fed a control diet except during three different periods (period A: from 8 to 13d post-hatching (dph); period B: from 13 to 18dph; period C: from 18 to 23dph) with two compound diets containing high levels of vitamin A or PUFA. European sea bass morphogenesis was affected by these two dietary nutrients during the early stages of development. The genes involved in morphogenesis could be modulated between 8 and 13dph, and our results indicated that retinoids and fatty acids influenced two different molecular pathways that in turn implicated two different gene cascades, resulting in two different kinds of malformation. Hypervitaminosis A delayed development, reducing the number of vertebral segments and disturbing bone formation in the cephalic region. These malformations were correlated to an upregulation of retinoic acid receptor γ, retinoid X receptor (RXR) α and bone morphogenetic protein (BMP)4. An excess of PUFA accelerated the osteoblast differentiation process through the upregulation of RXRα and BMP4, leading to a supernumerary vertebra. These results suggest that the composition of diets devoted to marine fish larvae has a particularly determining effect before 13dph on the subsequent development of larvae and juvenile fish.


2019 ◽  
Vol 90 ◽  
pp. 317-327 ◽  
Author(s):  
Shay Ravid-Peretz ◽  
Angelo Colorni ◽  
Galit Sharon ◽  
Michal Ucko

Aquaculture ◽  
2021 ◽  
pp. 737257
Author(s):  
A. Samaras ◽  
A. Dimitroglou ◽  
S. Kollias ◽  
G. Skouradakis ◽  
I.E. Papadakis ◽  
...  

Chemosphere ◽  
2007 ◽  
Vol 67 (6) ◽  
pp. 1171-1181 ◽  
Author(s):  
L. Giari ◽  
M. Manera ◽  
E. Simoni ◽  
B.S. Dezfuli

2011 ◽  
Vol 75 (5) ◽  
pp. 643-649 ◽  
Author(s):  
Francesco Abbate ◽  
Maria Cristina Guerrera ◽  
Giuseppe Montalbano ◽  
Felix De Carlos ◽  
Alberto Álvarez Suárez ◽  
...  

Author(s):  
Malyka Galay-Burgos ◽  
Lynda Llewellyn ◽  
Constantinos C Mylonas ◽  
Adelino V.M Canario ◽  
Silvia Zanuy ◽  
...  

Author(s):  
Marinelle Espino ◽  
Harkaitz Eguiraun ◽  
Oihane Diaz de Cerio ◽  
José Antonio Carrero ◽  
Nestor Etxebarria ◽  
...  

AbstractFeeding 3.9 and 6.7 mg Hg/kg (Se/Hg molar ratios of 0.8 and 0.4, respectively) for 14 days negatively affected Dicentrarchus labrax growth and total DNTB- and thioredoxin-reductase (TrxR) activities and the transcription of four redox genes (txn1, gpx1, txnrd3, and txnrd2) in the liver, but a diet with 0.5 mg Hg/kg (Se/Hg molar ratio 6.6) slightly increased both reductase activities and the transcription of txn1, gpx1, and txnrd2. Feeding 6.7 mg Hg/kg for 53 days downregulated the genes of the thioredoxin system (txn1, txnrd3, and txnrd2) but upregulated gpx1, confirming the previously proposed complementarity among the antioxidant systems. Substitution of 20% of the feed by thawed white fish (hake) slightly counteracted the negative effects of Hg. The effects were not statistically significant and were dependent, in a non-linear manner, on the Se/Hg molar ratio of the feed but not on its Hg concentration. These results stress the need to consider the Se/Hg molar ratio of the feed/food when evaluating the toxicity of Hg.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
C. Lorin-Nebel ◽  
H. Budzinski ◽  
K. Le Ménach ◽  
M.H. Devier ◽  
G. Charmantier ◽  
...  

Not available


Sign in / Sign up

Export Citation Format

Share Document