Up-regulation of SOX9 in human sex-determining region on the Y chromosome (SRY)-negative XX males

2008 ◽  
Vol 68 (5) ◽  
pp. 791-799 ◽  
Author(s):  
Yoshiyuki Kojima ◽  
Yutaro Hayashi ◽  
Kentaro Mizuno ◽  
Shoichi Sasaki ◽  
Yuko Fukui ◽  
...  
Keyword(s):  
Genetics ◽  
2003 ◽  
Vol 163 (1) ◽  
pp. 245-251 ◽  
Author(s):  
Indrajit Nanda ◽  
Ute Hornung ◽  
Mariko Kondo ◽  
Michael Schmid ◽  
Manfred Schartl

Abstract In the medaka, a duplicated version of the dmrt1 gene, dmrt1bY, has been identified as a candidate for the master male sex-determining gene on the Y chromosome. By screening several strains of Northern and Southern medaka we identified a considerable number of males with normal phenotype and uncompromised fertility, but lacking dmrt1bY. The frequency of such males was >10% in some strains and zero in others. Analysis for the presence of other Y-linked markers by FISH analysis, PCR, and phenotype indicated that their genotype is XX. Crossing such males with XX females led to a strong female bias in the offspring and also to a reappearance of XX males in the following generations. This indicated that the candidate male sex-determining gene dmrt1bY may not be necessary for male development in every case, but that its function can be taken over by so far unidentified autosomal modifiers.


Author(s):  
Jae Hak Son ◽  
Richard P. Meisel

AbstractX and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The up-regulation of the proto-Y allele may be favored in males because of this gene’s function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.


Development ◽  
1987 ◽  
Vol 101 (Supplement) ◽  
pp. 39-39
Author(s):  
P. N. Goodfellow

DNA probes isolated from the human Y chromosome have been used to resolve two fundamental problems concerning the biology of sex determination in man. Coincidentally, resolution of these problems has generated genetic maps of the short arm of the human Y chromosome and has allowed the regional localization of TDF. The first problem to be solved was the origin of XX males (de la Chapelle, this symposium): the majority of XX males are caused by a telomeric exchange between the X and Y chromosomes that results in TDF and a variable amount of Y-derived material being transferred to the X chromosome. The differing amounts of Y-derived material present in XX males has been used as the basis of a ‘deletion’ map of the Y chromosome (Müller; Ferguson-Smith & Affara; this symposium).


1999 ◽  
Vol 42 (3) ◽  
pp. 179-183 ◽  
Author(s):  
T. TATENO ◽  
I. SASAGAWA ◽  
J. ASHIDA ◽  
T. NAKADA

1989 ◽  
Vol 81 (2) ◽  
pp. 144-148 ◽  
Author(s):  
W. Schempp ◽  
G. M�ller ◽  
G. Scherer ◽  
S. K. Bohlander ◽  
W. Rommerskirch ◽  
...  

2019 ◽  
Author(s):  
Paris Veltsos ◽  
Nicolas Rodrigues ◽  
Tania Studer ◽  
Wen-Juan Ma ◽  
Roberto Sermier ◽  
...  

AbstractThe canonical model of sex-chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (non-recombinant Y haplotypes) coexist with both XY° males with proto-Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex-determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study shows no effect of sex-chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs seems to result from the differential expression of autosomal genes rather than sex-linked SA genes. Among-male variance in sex-chromosome differentiation is better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X-Y recombination in XY females), independent of sex-linked SA genes.Impact SummaryHumans, like other mammals, present highly differentiated sex chromosomes, with a large, gene-rich X chromosome contrasting with a small, gene-poor Y chromosome. This differentiation results from a process that started approximately 160 Mya, when the Y first stopped recombining with the X. How and why this happened, however, remain controversial. According to the canonical model, the process was initiated by sexually antagonistic selection; namely, selection on the proto-Y chromosome for alleles that were beneficial to males but detrimental to females. The arrest of XY recombination then allowed such alleles to be only transmitted to sons, not to daughters. Although appealing and elegant, this model can no longer be tested in mammals, as it requires a sex-chromosome system at an incipient stage of evolution. Here we focus on a frog that displays within-population polymorphism is sex-chromosome differentiation, where XY males with differentiated chromosomes coexist with XX males lacking Y chromosomes. We find no effect of sex-chromosome differentiation on male phenotype or mating success, opposing expectations from the standard model. Sex linked genes do not seem to have a disproportionate effect on sexual dimorphism. From our results, sexually antagonistic genes show no association with sex-chromosome differentiation in frogs, which calls for alternative models of sex-chromosome evolution.


PEDIATRICS ◽  
1977 ◽  
Vol 60 (1) ◽  
pp. 55-59
Author(s):  
Thomas F. Roe ◽  
Omar S. Alfi

Two infants with ambiguous genitalia were recognized to have the XX male syndrome. Although most xx males have normal penile development, a review of the reported cases showed that eight of the 14 affected children, diagnosed before age 15 years, had penile abnormalities, most commonly hypospadias and/or chordee. This syndrome should be considered in children with incomplete genital differentiation. The available indirect evidence suggests that deficient testosterone production by the fetal testes accounts for the genital ambiguity. Although no explanation has been established for the presence of testes in the apparent absence of the Y chromosome, studies of the X-linked Xg blood group in XX males demonstrate a high frequency of unusual inheritance patterns. This implies that the abnormality in the transmission of maleness in affected families may also be X-related rather than autosomal.


1987 ◽  
Vol 24 (4) ◽  
pp. 197-203 ◽  
Author(s):  
V J Buckle ◽  
Y Boyd ◽  
N Fraser ◽  
P N Goodfellow ◽  
P J Goodfellow ◽  
...  
Keyword(s):  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7709 ◽  
Author(s):  
Rokyatou Sissao ◽  
Helena D’Cotta ◽  
Jean-François Baroiller ◽  
Aboubacar Toguyeni

Sex determination and sex chromosomes can be very diverse between teleost species. The group of tilapias shows a polymorphism in sex determination not only between closely related species but also between domestic strains within a species. In the Nile tilapia, the major effect genes and therefore the Y chromosome have been located on either linkage group 1 (LG1) or LG23 depending on the strains. In a Japanese strain, the sex determinant of LG23 (the amhY gene) has been identified as a duplicated amh (anti-Müllerian hormone) gene, with its gametolog found on the X chromosome (amhX). AmhY is located in tandem with the amhΔY gene (a truncated form) on the Y chromosome. X and Y chromosome markers based on the amh genes have been validated only on a few domestic strains but not in wild populations. Here, we used four of these markers in order to examine (1) the possible variation in sex determination of a wild population of Nile tilapia living in Lake Kou (Burkina Faso), (2) putative polymorphisms for these amh copies and (3) the existence of sex reversed individuals in the wild. Our genotyping of 91 wild Kou individuals with the amh sex-diagnostic markers of LG23 showed that while phenotypic females were all XX, phenotypic males were either XY or XX. Progeny testing of eight of these XX males revealed that one of these males consistently sired all-female progenies, suggesting that it is a wild sex reversed male (which could result from high temperature effects). The other XX males gave balanced sex ratios, suggesting that sex is controlled by another locus (possibly on another LG) which may be epistatically dominant over the LG23 locus. Finally, identification of unexpected amh genotypes was found for two individuals. They produced either balanced or female-biased sex ratios, depending on the breeder with whom they were crossed, suggesting possible recombination between the X and the Y chromosomes.


Author(s):  
Jae Hak Son ◽  
Richard P Meisel

Abstract X and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The upregulation of the proto-Y allele may be favored in males because of this gene’s function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.


Sign in / Sign up

Export Citation Format

Share Document