Inoculum potential and host range of Polymyxa betae and beet necrotic yellow vein furovirus

EPPO Bulletin ◽  
1989 ◽  
Vol 19 (3) ◽  
pp. 517-525 ◽  
Author(s):  
J. P. GOFFART ◽  
V. HORTA ◽  
H. MARAITE
Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 201-201 ◽  
Author(s):  
William M. Wintermantel ◽  
Teresa Crook ◽  
Ralph Fogg

Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV) and vectored by the soilborne fungus Polymyxa betae Keskin, is one of the most economically damaging diseases affecting sugar beet (Beta vulgaris L.). The virus likely originated in Europe and was first identified in California in 1983 (1). It has since spread among American sugar beet production regions in spite of vigorous sanitation efforts, quarantine, and disease monitoring (3). In the fall of 2002, mature sugar beet plants exhibiting typical rhizomania root symptoms, including proliferation of hairy roots, vascular discoloration, and some root constriction (2) were found in several fields scattered throughout central and eastern Michigan. Symptomatic beets were from numerous cultivars, all susceptible to rhizomania. Two to five sugar beet root samples were collected from each field and sent to the USDA-ARS in Salinas, CA for analysis. Hairy root tissue from symptomatic plants was used for mechanical inoculation of indicator plants. Mechanical inoculation produced necrotic lesions on Chenopodium quinoa and systemic infection of Beta vulgaris ssp. macrocarpa, both typical of BNYVV and identical to control inoculations with BNYVV. Symptomatic sugar beet roots were washed and tested using double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) for the presence of BNYVV using standard procedures and antiserum specific for BNYVV (3). Sugar beet roots were tested individually, and samples were considered positive when absorbance values were at least three times those of greenhouse-grown healthy sugar beet controls. Samples were tested from 16 fields, with 10 confirmed positive for BNYVV. Positive samples had mean absorbance values ranging from 0.341 to 1.631 (A405nm) after 30 min. The mean healthy control value was 0.097. Fields were considered positive if one beet tested positive for BNYVV, but in most cases, all beets tested from a field were uniformly positive or uniformly negative. In addition, soil-baiting experiments were conducted on seven of the fields. Sugar beet seedlings were grown in soil mixed with equal parts of sand for 6 weeks and were subsequently tested using DAS-ELISA for BNYVV. Results matched those of the root sampling. Fields testing positive for BNYVV were widely dispersed within a 100 square mile (160 km2) area including portions of Gratiot, Saginaw, Tuscola, and Sanilac counties in the central and eastern portions of the Lower Peninsula of Michigan. The confirmation of rhizomania in sugar beet from the Great Lakes Region marks the last major American sugar beet production region to be diagnosed with rhizomania disease, nearly 20 years after its discovery in California (1). In 2002, there were approximately 185,000 acres (approximately 75,00 ha) of sugar beet grown in the Great Lakes Region, (Michigan, Ohio, and southern Ontario, Canada). The wide geographic distribution of infested fields within the Michigan growing area suggests the entire region should monitor for symptoms, increase rotation to nonhost crops, and consider planting rhizomania resistant sugar beet cultivars to infested fields. References:(1) J. E. Duffus et al. Plant Dis. 68:251, 1984. (2) J. E. Duffus. Rhizomania. Pages 29–30 in: Compendium of Beet Diseases and Insects, E. D. Whitney and J. E. Duffus eds. The American Phytopathological Society, St. Paul, MN, 1986. (3) G. C. Wisler et al. Plant Dis. 83:864, 1999.


1994 ◽  
Vol 31 (1) ◽  
pp. 1-6 ◽  
Author(s):  
H. Paul ◽  
B. Henken ◽  
O. E. Scholten ◽  
Th. S. M. De Bock ◽  
W. Lange

Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 640-640 ◽  
Author(s):  
H.-Y. Liu ◽  
B. Mou ◽  
K. Richardson ◽  
S. T. Koike

In 2009, plants from two spinach (Spinacia oleracea) experimental fields in Monterey County and one commercial spinach field in Ventura County of California exhibited vein-clearing, mottling, interveinal yellowing, and stunting symptoms. For experimental fields, up to 44% of spinach plants have symptoms. With a transmission electron microscope, rigid rod-shaped particles with central canals were observed from plant sap of the symptomatic spinach. Analysis with a double-antibody sandwich-ELISA assay for Beet necrotic yellow vein virus (BNYVV) showed that all 10 symptomatic plants we tested were positive and 5 asymptomatic plants were negative. Symptomatic spinach from both counties was used for mechanical transmission experiments. Chenopodium quinoa, Tetragonia expansa, and Beta vulgaris (sugar beet) showed chlorotic local lesions and B. macrocarpa and spinach showed vein-clearing, mottling, and systemic infections. To further confirm the presence of BNYVV, reverse transcription (RT)-PCR was conducted. Total RNA was extracted from field- and mechanically inoculated symptomatic spinach plants using an RNeasy Plant Kit (Qiagen Inc., Valencia, CA) and used as a template in RT-PCR. Forward and reverse primers specific to the BNYVV RNA-3 P25 protein gene from the beet isolate were used (2). Amplicons of the expected size (approximately 860 bp) were obtained. Four RT-PCR products were sequenced and the sequences were identical (GenBank Accession No. GU135626). Sequences from the spinach plants had 97 to 99% nucleotide and 94 to 100% amino acid identity with BNYVV RNA-3 P25 protein sequences available in the GenBank. On the basis of the data from electron microscopy, indicator plants, serology, and cDNA sequencing, the virus was identified as BNYVV. BNYVV has been reported from spinach fields in Italy (1). To our knowledge, this is the first report of BNYVV occurring naturally on spinach in California. Since BNYVV is transmitted by the zoospores of the soil-inhabiting plasmodiophorid Polymyxa betae, it could be a new threat to spinach production in the state. References: (1) C. R. Autonell et al. Inf. Fitopatol. 45:43, 1995. (2) H.-Y. Liu and R. T. Lewellen, Plant Dis. 91:847, 2007.


2005 ◽  
Vol 18 (3) ◽  
pp. 194-204 ◽  
Author(s):  
Ida Bagus Andika ◽  
Hideki Kondo ◽  
Tetsuo Tamada

In plants, RNA silencing is part of a defense mechanism against virus infection but there is little information as to whether RNA silencing-mediated resistance functions similarly in roots and leaves. We have obtained transgenic Nicotiana benthamiana plants encoding the coat protein readthrough domain open reading frame (54 kDa) of Beet necrotic yellow vein virus (BNYVV), which either showed a highly resistant or a recovery phenotype following foliar rub-inoculation with BNYVV. These phenotypes were associated with an RNA silencing mechanism. Roots of the resistant plants that were immune to foliar rub-inoculation with BNYVV could be infected by viruliferous zoospores of the vector fungus Polymyxa betae, although virus multiplication was greatly limited. In addition, virus titer was reduced in symptomless leaves of the plants showing the recovery phenotype, but it was high in roots of the same plants. Compared with leaves of silenced plants, higher levels of transgene mRNAs and lower levels of transgene-derived small interfering RNAs (siRNAs) accumulated in roots. Similarly, in nontransgenic plants inoculated with BNYVV, accumulation level of viral RNA-derived siRNAs in roots was lower than in leaves. These results indicate that the RNA silencing-mediated resistance to BNYVV is less effective in roots than in leaves.


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1070-1076 ◽  
Author(s):  
G. B. Heidel ◽  
C. M. Rush ◽  
T. L. Kendall ◽  
S. A. Lommel ◽  
R. C. French

Beet soilborne mosaic virus (BSBMV) is a rigid rod-shaped virus transmitted by Polymyxa betae. Particles were 19 nm wide and ranged from 50 to over 400 nm, but no consistent modal lengths could be determined. Nucleic acids extracted from virions were polyadenylated and typically separated into three or four discrete bands of variable size by agarose-formaldehyde gel electrophoresis. RNA 1 and 2, the largest of the RNAs, consistently averaged 6.7 and 4.6 kb, respectively. The sizes and number of smaller RNA species were variable. The molecular mass of the capsid protein of BSBMV was estimated to be 22.5 kDa. In Northern blots, probes specific to the 3′ end of individual beet necrotic yellow vein virus (BNYVV) RNAs 1–4 hybridized strongly with the corresponding BNYVV RNA species and weakly with BSBMV RNAs 1, 2, and 4. Probes specific to the 5′ end of BNYVV RNAs 1–4 hybridized with BNYVV but not with BSBMV. No cross-reaction between BNYVV and BSBMV was detected in Western blots. In greenhouse studies, root weights of BSBMV-infected plants were significantly lower than mock-inoculated controls but greater than root weights from plants infected with BNYVV. Results of serological, hybridization, and virulence experiments indicate that BSBMV is distinct from BNYVV. However, host range, capsid size, and the number, size, and polyadenylation of its RNAs indicate that BSBMV more closely resembles BNYVV than it does other members of the genus Furovirus.


Sign in / Sign up

Export Citation Format

Share Document