scholarly journals Characteristics of Beet Soilborne Mosaic Virus, a Furo-like Virus Infecting Sugar Beet

Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1070-1076 ◽  
Author(s):  
G. B. Heidel ◽  
C. M. Rush ◽  
T. L. Kendall ◽  
S. A. Lommel ◽  
R. C. French

Beet soilborne mosaic virus (BSBMV) is a rigid rod-shaped virus transmitted by Polymyxa betae. Particles were 19 nm wide and ranged from 50 to over 400 nm, but no consistent modal lengths could be determined. Nucleic acids extracted from virions were polyadenylated and typically separated into three or four discrete bands of variable size by agarose-formaldehyde gel electrophoresis. RNA 1 and 2, the largest of the RNAs, consistently averaged 6.7 and 4.6 kb, respectively. The sizes and number of smaller RNA species were variable. The molecular mass of the capsid protein of BSBMV was estimated to be 22.5 kDa. In Northern blots, probes specific to the 3′ end of individual beet necrotic yellow vein virus (BNYVV) RNAs 1–4 hybridized strongly with the corresponding BNYVV RNA species and weakly with BSBMV RNAs 1, 2, and 4. Probes specific to the 5′ end of BNYVV RNAs 1–4 hybridized with BNYVV but not with BSBMV. No cross-reaction between BNYVV and BSBMV was detected in Western blots. In greenhouse studies, root weights of BSBMV-infected plants were significantly lower than mock-inoculated controls but greater than root weights from plants infected with BNYVV. Results of serological, hybridization, and virulence experiments indicate that BSBMV is distinct from BNYVV. However, host range, capsid size, and the number, size, and polyadenylation of its RNAs indicate that BSBMV more closely resembles BNYVV than it does other members of the genus Furovirus.

Parasitology ◽  
1999 ◽  
Vol 119 (2) ◽  
pp. 167-176 ◽  
Author(s):  
L. ROBERTSON ◽  
W. M. ROBERTSON ◽  
J. T. JONES

Secretions were induced from second (invasive) stage juveniles (J2s) of the potato cyst nematode Globodera rostochiensis by exposing them to 5-methoxy-N,N-dimethyl tryptamine oxalate (DMT). Secretions were collected from J2s in sufficient quantity to allow direct analysis. Gel electrophoresis followed by monochromatic silver staining demonstrated the presence of at least 10 proteins. The presence of several enzymes, including superoxide dismutase and proteases, was demonstrated using Western blots and activity assays. Antisera raised against the secretions recognized bands on Western blots consistent in molecular mass with those identified on silver stained gels. The antisera recognized structures implicated in the production of secretions including the subventral gland cells and surface of J2s.


Plant Disease ◽  
2003 ◽  
Vol 87 (10) ◽  
pp. 1170-1175 ◽  
Author(s):  
G. C. Wisler ◽  
R. T. Lewellen ◽  
J. L. Sears ◽  
J. W. Wasson ◽  
H.-Y. Liu ◽  
...  

Soils naturally infested with cultures of aviruliferous Polymyxa betae and viruliferous P. betae carrying two sugar beet benyviruses, Beet necrotic yellow vein virus (BNYVV) and Beet soilborne mosaic virus (BSBMV), alone and in combination, were compared with noninfested soil for their effects on seedling emergence, plant fresh weight, and virus content as measured by enzyme-linked immunosorbent assay (ELISA). Studies examined sugar beet with and without resistance to the disease rhizomania, caused by BNYVV. The Rz gene, conferring resistance to BNYVV, did not confer resistance to BSBMV. BSBMV ELISA values were significantly higher in single infections than in mixed infections with BNYVV, in both the rhizomania-resistant and -susceptible cultivars. In contrast, ELISA values of BNYVV were high (8 to 14 times the healthy mean) in single and mixed infections in the rhizomania-susceptible cultivar, but were low (approximately three times the healthy mean) in the rhizomania-resistant cultivar. Results indicate BNYVV may suppress BSBMV in mixed infections, even in rhizomania-resistant cultivars in which ELISA values for BNYVV are extremely low. Soils infested with P. betae, and with one or both viruses, showed significantly reduced fresh weight of seedlings, and aviruliferous P. betae significantly decreased sugar beet growth in assays.


Plant Disease ◽  
2003 ◽  
Vol 87 (6) ◽  
pp. 707-711 ◽  
Author(s):  
F. Workneh ◽  
E. Villanueva ◽  
K. Steddom ◽  
C. M. Rush

Beet necrotic yellow vein virus (BNYVV) causes rhizomania of sugar beet (Beta vulgaris), which is characterized by stunting, leaf necrosis, constriction of the taproot, and extensive lateral- and feeder-root proliferation. Beet soilborne mosaic virus (BSBMV) causes similar but typically less severe symptoms than those of BNYVV. Both viruses are widely distributed in sugar beet-growing regions of the United States. Both viruses are vectored by the soilborne plasmodiophorid Polymyxa betae Keskin and are very similar in morphology and biology, sharing many characteristics in common. In 1999, soil samples were collected from sugar beet fields in Colorado, Minnesota, North Dakota, and Texas to determine the spatial association and covariation of the viruses in sugar beet fields. In 2000, additional samples were collected from fields in Minnesota and North Dakota. Over the 2-year period, soil samples were collected from 11 fields in various quadrat sizes. The viruses were assayed by growing sugar beet (cv. Beta 1395) in the soil samples and their incidence was determined using the double-antibody sandwich enzyme-linked immunosorbent assay. Both viruses were detected in samples from all fields but were in greater frequencies singly than in association. Association of the two viruses (where both viruses were detected in the same sample or bait plant) varied among fields, ranging from 1 to 42%. Geostatistical analysis revealed that both viruses, in large part, exhibited similar spatial patterns. In all but two fields, there was no spatial dependence among the sampling locations at sampled grid sizes. Their semivariances were constant at all separation distances in all directions indicating random spatial patterns. Overall, the spatial pattern of BNYVV appeared to be a little more structured than that of BSBMV. Even though both viruses are transmitted by the same vector and also exhibited similar distribution patterns, the incidence of one virus may not be estimated from that of the other due to lack of strong association and spatial dependence. However, similarity in spatial patterns of the two suggests that a similar sampling method can be employed for both viruses.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 626
Author(s):  
John J. Weiland ◽  
Roshan Sharma Poudel ◽  
Alyssa Flobinus ◽  
David E. Cook ◽  
Gary A. Secor ◽  
...  

“Rhizomania” of sugar beet is a soilborne disease complex comprised of beet necrotic yellow vein virus (BNYVV) and its plasmodiophorid vector, Polymyxa betae. Although BNYVV is considered the causal agent of rhizomania, additional viruses frequently accompany BNYVV in diseased roots. In an effort to better understand the virus cohort present in sugar beet roots exhibiting rhizomania disease symptoms, five independent RNA samples prepared from diseased beet seedlings reared in a greenhouse or from field-grown adult sugar beet plants and enriched for virus particles were subjected to RNAseq. In all but a healthy control sample, the technique was successful at identifying BNYVV and provided sequence reads of sufficient quantity and overlap to assemble > 98% of the published genome of the virus. Utilizing the derived consensus sequence of BNYVV, infectious RNA was produced from cDNA clones of RNAs 1 and 2. The approach also enabled the detection of beet soilborne mosaic virus (BSBMV), beet soilborne virus (BSBV), beet black scorch virus (BBSV), and beet virus Q (BVQ), with near-complete genome assembly afforded to BSBMV and BBSV. In one field sample, a novel virus sequence of 3682 nt was assembled with significant sequence similarity and open reading frame (ORF) organization to members within the subgenus Alphanecrovirus (genus Necrovirus; family Tombusviridae). Construction of a DNA clone based on this sequence led to the production of the novel RNA genome in vitro that was capable of inducing local lesion formation on leaves of Chenopodium quinoa. Additionally, two previously unreported satellite viruses were revealed in the study; one possessing weak similarity to satellite maize white line mosaic virus and a second possessing moderate similarity to satellite tobacco necrosis virus C. Taken together, the approach provides an efficient pipeline to characterize variation in the BNYVV genome and to document the presence of other viruses potentially associated with disease severity or the ability to overcome resistance genes used for sugar beet rhizomania disease management.


1988 ◽  
Vol 254 (2) ◽  
pp. 419-426 ◽  
Author(s):  
P M Wiest ◽  
E J Tisdale ◽  
W L Roberts ◽  
T L Rosenberry ◽  
A A F Mahmoud ◽  
...  

Biosynthetic labelling experiments with cercariae and schistosomula of the multicellular parasitic trematode Schistosoma mansoni were performed to determine whether [3H]palmitate or [3H]ethanolamine was incorporated into proteins. Parasites incorporated [3H]palmitate into numerous proteins, as judged by SDS/polyacrylamide-gel electrophoresis and fluorography. The radiolabel was resistant to extraction with chloroform, but sensitive to alkaline hydrolysis, indicating the presence of an ester bond. Further investigation of the major 22 kDa [3H]palmitate-labelled species showed that the label could be recovered in a Pronase fragment which bound detergent and had an apparent molecular mass of 1200 Da as determined by gel filtration on Sephadex LH-20. Schistosomula incubated with [3H]ethanolamine for up to 24 h incorporated this precursor into several proteins; labelled Pronase fragments recovered from the three most intensely labelled proteins were hydrophilic and had a molecular mass of approx. 200 Da. Furthermore, reductive methylation of such fragments showed that the [3H]ethanolamine bears a free amino group, indicating the lack of an amide linkage. We also evaluated the effect of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: [3H]palmitate-labelled proteins of schistosomula and surface-iodinated proteins were resistant to hydrolysis with this enzyme. In conclusion, [3H]palmitate and [3H]ethanolamine are incorporated into distinct proteins of cercariae and schistosomula which do not bear glycophospholipid anchors. The [3H]ethanolamine-labelled proteins represent a novel variety of protein modification.


Sign in / Sign up

Export Citation Format

Share Document